7,548 research outputs found

    Prognostic value of routine laboratory variables in prediction of breast cancer recurrence.

    Get PDF
    The prognostic value of routine laboratory variables in breast cancer has been largely overlooked. Based on laboratory tests commonly performed in clinical practice, we aimed to develop a new model to predict disease free survival (DFS) after surgical removal of primary breast cancer. In a cohort of 1,596 breast cancer patients, we analyzed the associations of 33 laboratory variables with patient DFS. Based on 3 significant laboratory variables (hemoglobin, alkaline phosphatase, and international normalized ratio), together with important demographic and clinical variables, we developed a prognostic model, achieving the area under the curve of 0.79. We categorized patients into 3 risk groups according to the prognostic index developed from the final model. Compared with the patients in the low-risk group, those in the medium- and high-risk group had a significantly increased risk of recurrence with a hazard ratio (HR) of 1.75 (95% confidence interval [CI] 1.30-2.38) and 4.66 (95% CI 3.54-6.14), respectively. The results from the training set were validated in the testing set. Overall, our prognostic model incorporating readily available routine laboratory tests is powerful in identifying breast cancer patients who are at high risk of recurrence. Further study is warranted to validate its clinical application

    Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study

    Full text link
    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn and Fe impurities show DMS properties, those with Ti and Ni impurities show half-metal properties, whereas Sc and Co doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to non-magnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes.Comment: 9 pages, 7 figure

    Assessment of cardiac dysfunction by dissipative energy loss derived from vector flow mapping

    Get PDF

    DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning

    Full text link
    Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations and is essential for the development of communicative social agents. In this paper, we introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding. Compared with previous works that treat different figurative expressions (e.g. metaphor, sarcasm) as individual tasks, DiPlomat provides a cohesive framework towards general pragmatic understanding. Our dataset is created through the utilization of Amazon Mechanical Turk ( AMT ), resulting in a total of 4, 177 multi-turn dialogues. In conjunction with the dataset, we propose two tasks, Pragmatic Identification and Reasoning (PIR) and Conversational Question Answering (CQA). Experimental results with state-of-the-art (SOTA) neural architectures reveal several significant findings: 1) large language models ( LLMs) exhibit poor performance in tackling this subjective domain; 2) comprehensive comprehension of context emerges as a critical factor for establishing benign human-machine interactions; 3) current models defect in the application of pragmatic reasoning. As a result, we call on more attention to improve the ability of context understanding, reasoning, and implied meaning modeling

    FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection

    Get PDF
    In this paper, we propose an novel interactive outlier detection system called feature-rich interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve detection performance and greatly streamline the detection process. A user-friendly interactive mechanism is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection methods in specifying the key parameter values, such as the density and distance thresholds. An innovative optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected outliers and make the detection process more intuitive, effective, and efficient
    • …
    corecore