769 research outputs found

    Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where

    Full text link
    While image data starts to enjoy the simple-but-effective self-supervised learning scheme built upon masking and self-reconstruction objective thanks to the introduction of tokenization procedure and vision transformer backbone, convolutional neural networks as another important and widely-adopted architecture for image data, though having contrastive-learning techniques to drive the self-supervised learning, still face the difficulty of leveraging such straightforward and general masking operation to benefit their learning process significantly. In this work, we aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks as an extra augmentation method. In addition to the additive but unwanted edges (between masked and unmasked regions) as well as other adverse effects caused by the masking operations for ConvNets, which have been discussed by prior works, we particularly identify the potential problem where for one view in a contrastive sample-pair the randomly-sampled masking regions could be overly concentrated on important/salient objects thus resulting in misleading contrastiveness to the other view. To this end, we propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background for realizing the masking-based augmentation. Moreover, we introduce hard negative samples by masking larger regions of salient patches in an input image. Extensive experiments conducted on various datasets, contrastive learning mechanisms, and downstream tasks well verify the efficacy as well as the superior performance of our proposed method with respect to several state-of-the-art baselines

    Molecular Analysis of Spring Viraemia of Carp Virus in China: A Fatal Aquatic Viral Disease that Might Spread in East Asian

    Get PDF
    Spring viraemia of carp (SVC) is a fatal viral disease for cyprinid fish, which is caused by spring viraemia of carp virus (SVCV). To date, no SVC outbreak has been reported in China. Between 1998 and 2002, outbreaks of SVC were reported in ornamental and wild fish in Europe and America, imported from multiple sources including China. Based on phylogenetic analysis, the viral strain isolated from America was shown to be originated from Asia. These outbreaks not only resulted in huge economic losses, but also raise an interesting question as to whether SVCV really exists in China and if so, is it responsible for SVC outbreaks? From 2002 to 2006, we screened 6700 samples from ornamental fish farms using the cell culture method of the Office International des Epizooties (OIE), and further verified the presence of SVCV by ELISA and real-time quantitative RT-PCR. Two infected samples were found and the complete genome of SVCV was sequenced from one of the isolates, termed SVCV-C1. Several unique hallmarks of SVCV-C1 were identified, including six amino acid (KSLANA) insertion in the viral RNA-dependent RNA polymerase (L) protein and ten nucleotide insertion in the region between glycoprotein (G) and L genes in European SVCV strains. Phylogenetic tree analysis of the full-length G protein of selected SVCV isolates from the United Kingdom and United States revealed that G proteins could be classified into Ia and Id sub genogroups. The Ia sub genogroup can be further divided into newly defined sub genogroups Ia-A and Ia-B. The isolates derived from the United States and China including the SVCV-C1 belongs to in the Ia-A sub genogroup. The SVCV-C1 G protein shares more than 99% homology with the G proteins of the SVCV strains from England and the United States, making it difficult to compare their pathogenicity. Comparison of the predicted three-dimensional structure based on the published G protein sequences from five SVCV strains revealed that the main differences were in the loops of the pleckstrin homology domains. Since SVCV is highly pathogenic, we speculate that SVC may therefore pose a serious threat to farmed cyprinid fish in China

    MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MiR-221 and miR-222 (miR-221/222) are frequently up-regulated in various types of human malignancy including glioblastoma. Recent studies have reported that miR-221/222 regulate cell growth and cell cycle progression by targeting p27 and p57. However the underlying mechanism involved in cell survival modulation of miR-221/222 remains elusive.</p> <p>Results</p> <p>Here we showed that miR-221/222 inhibited cell apoptosis by targeting pro-apoptotic gene PUMA in human glioma cells. Enforced expression of miR-22/222 induced cell survival whereas knockdown of miR-221/222 rendered cells to apoptosis. Further, miR-221/222 reduced PUMA protein levels by targeting PUMA-3'UTR. Introducing PUMA cDNA without 3'UTR abrogated miR-221/222-induced cell survival. Notably, knockdown of miR-221/222 induces PUMA expression and cell apoptosis and considerably decreases tumor growth in xenograft model. Finally, there was an inverse relationship between PUMA and miR-221/222 expression in glioma tissues.</p> <p>Conclusion</p> <p>To our knowledge, these data indicate for the first time that miR-221/222 directly regulate apoptosis by targeting PUMA in glioblastoma and that miR-221/222 could be potential therapeutic targets for glioblastoma intervention.</p

    Investigation of Maillard reaction involvement in the steam processing of Panax Notoginseng root

    Get PDF
    Purpose: To explore the possible mechanism of Maillard reaction (MR) involvement in the steam processing of Panax notoginseng (PN) root.Methods: PN root was soaked in water for 24 h and then steamed at 100 °C using an autoclave for 1, 2, 3, 4, 5 and 6 h, respectively. Several indicators associated with MR during steam processing were measured. The pH and absorbance at 420 nm (A420) of samples were measured using a pH meter and an ultraviolet-visible spectrophotometer, respectively. The contents of 5-hydroxy-methyl-furfural (5-HMF) and sugars were determined by high performance liquid chromatography (HPLC) while amino acids were evaluated using an automatic amino acid analyzer.Results: During PN root steam processing (0 - 6 h), pH value gradually decreased from 6.35 ± 0.02 to 5.88 ± 0.03 while A420 value gradually increased from 0.23 ± 0.01 to 0.44 ± 0.02. The levels of reducing sugars (maltose and glucose) and amino acids (aspartic acid, glutamate, cysteine, lysine and arginine) in PN root decreased after steaming for 6 h. However, the content of 5-HMF in PN root increased with increase in steaming time.Conclusion: The results indicate that MR occurs during steam processing of PN root, and the reaction mechanism might be closely related to the reaction between the reducing sugars and amino acids.Keywords: Panax notoginseng, Steaming, Reducing sugars, Amino acids, Maillard reactio
    • …
    corecore