974 research outputs found

    Proteomic differences between developmental stages of Toxoplasma gondii revealed by iTRAQ-based quantitative proteomics

    Get PDF
    Toxoplasma gondii has a complex two-host life-cycle between intermediate host and definitive host. Understanding proteomic variations across the life-cycle stages of T. gondii may improve the understanding of molecular adaption mechanism of T. gondii across life-cycle stages, and should have implications for the development of new treatment and prevention interventions against T. gondii infection. Here, we utilized LC–MS/MS coupled with iTRAQ labeling technology to identify differentially expressed proteins (DEPs) specific to tachyzoite (T), bradyzoites-containing cyst (C) and sporulated oocyst (O) stages of the cyst-forming T. gondii Prugniuad (Pru) strain. A total of 6285 proteins were identified in the three developmental stages of T. gondii. Our analysis also revealed 875, 656, and 538 DEPs in O vs. T, T vs. C, and C vs. O, respectively. The up- and down-regulated proteins were analyzed by Gene Ontology enrichment, KEGG pathway and STRING analyses. Some virulence-related factors and ribosomal proteins exhibited distinct expression patterns across the life-cycle stages. The virulence factors expressed in sporulated oocysts and the number of up-regulated virulence factors in the cyst stage were about twice as many as in tachyzoites. Of the 79 ribosomal proteins identified in T. gondii, the number of up-regulated ribosomal proteins was 33 and 46 in sporulated oocysts and cysts, respectively, compared with tachyzoites. These results support the hypothesis that oocyst and cystic stages are able to adapt to adverse environmental conditions and selection pressures induced by the host’s immune response, respectively. These findings have important implications for understanding of the developmental biology of T. gondii, which may facilitate the discovery of novel therapeutic targets to better control toxoplasmosis

    N′-Ferrocenyl-2-hydroxy­benzohydrazide

    Get PDF
    The title complex, [Fe(C5H5)(C13H11N2O3)], was prepared via self-assembly using ferrocenyl hydrazide and ethyl salicylate. The compound is potentially a tridentate ferrocene-based ligand. The conformation of the mol­ecule allows the formation of an intra­molecular N—H⋯O hydrogen bond involving the hydroxyl group. The CONHNHCO unit and the rings bonded to it are nearly coplanar. The crystal structure is stabilized by inter­molecular O—H⋯O(carbon­yl) and N—H⋯O(carbon­yl) hydrogen bonds

    Serum metabolic profiling of oocyst-induced Toxoplasma gondii acute and chronic infections in mice using mass-spectrometry

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as toxoplasmosis encephalitis and toxoplasmic chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii -infected mice patients and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analysed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI + or ESI − mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS -DA) identified metabolomics profiles that clearly differentiated T. gondii -infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolonme. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii oocyst induces a global perturbation of mice serum metabolonme, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii oocyst infection

    Sulfadiazine Sodium Ameliorates the Metabolomic Perturbation in Mice Infected with Toxoplasma gondii

    Get PDF
    In this study, we analyzed the global metabolomic changes associated with Toxoplasma gondii infection in mice in the presence or absence of sulfadiazine sodium (SDZ) treatment. BALB/c mice were infected with T. gondii GT1 strain and treated orally with SDZ (250 g/ml in water) for 12 consecutive days. Mice showed typical manifestations of illness at 20 days postinfection (dpi); by 30 dpi, 20% had survived and developed latent infection. We used ultraperformance liquid chromatography-mass spectrometry to profile the serum metabolomes in control (untreated and uninfected) mice, acutely infected mice, and SDZ-treated and infected mice. Infection induced significant perturbations in the metabolism of-linolenic acid, purine, pyrimidine, arginine, tryptophan, valine, glycerophospholipids, and fatty acyls. However, treatment with SDZ seemed to alleviate the serum metabolic alterations caused by infection. The restoration of the serum metabolite levels in the treated mice was associated with better clinical outcomes. These data indicate that untargeted metabolomics can reveal biochemical pathways associated with restoration of the metabolic status of T. gondii-infected mice following SDZ treatment and could be used to monitor responses to SDZ treatment. This study provides a new systems approach to elucidate the metabolic and therapeutic effects of SDZ in the context of murine toxoplasmosis. K E Y W O R D S Toxoplasma gondii, biomarkers, metabolomics, mice, serum metabolites, sulfadiazine sodium Toxoplasma gondii, an obligate intracellular protozoan parasite, is highly prevalent in warm-blooded animals and humans (1). T. gondii comprises three clonal lineages (type I, type II, and type III) (2). Despite 98% genetic similarity, dramatic differences in virulence exist among strains belonging to these T. gondii genotypes (3). Humans acquire infection mainly by ingesting undercooked meat containing tissue cysts or oocysts from contaminated water (4). Acute infection with this parasite is mediated by the aggressive, fast-replicating, tachyzoite stage, which can cause encephalitis or retinochoroiditis. In addition, reactivation of the latent form (i.e., bradyzoites-containing cysts) of T. gondii can cause life-threatening conditions and even death in immuno-compromised individuals (5)

    Birman-Wenzl-Murakami Algebra and the Topological Basis

    Full text link
    In this paper, we use entangled states to construct 9x9-matrix representations of Temperley-Lieb algebra (TLA), then a family of 9x9-matrix representations of Birman-Wenzl-Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.Comment: 11pages, 1 figur

    N′-(Phenyl­sulfon­yl)isonicotinohydrazide monohydrate

    Get PDF
    In the title compound, C12H11N3O3S·H2O, the pyridine ring makes a dihedral angle of 24.78 (14)° with the phenyl ring. Intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds are observed and stabilize the packing in the crystal structure

    Metabolomic Profiling of Mice Serum during Toxoplasmosis Progression Using Liquid Chromatography-Mass Spectrometry

    Get PDF
    Better understanding of the molecular changes associated with disease is essential for identifying new routes to improved therapeutics and diagnostic tests. The aim of this study was to investigate the dynamic changes in the metabolic profile of mouse sera during T. gondii infection. We carried out untargeted metabolomic analysis of sera collected from female BALB/c mice experimentally infected with the T. gondii Pru strain (Genotype II). Serum samples were collected at 7, 14 and 21 day post infection (DPI) from infected and control mice and were subjected to liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS)-based global metabolomics analysis. Multivariate statistical analysis identified 79 differentially expressed metabolites in ESI+ mode and 74 in ESI-mode in sera of T. gondii-infected mice compared to the control mice. Further principal component analysis (PCA) and partial least squares-discrimination analysis (PLS-DA) identified 19 dysregulated metabolites (5 in ESI+ mode and 14 in ESI-mode) related to the metabolism of amino acids and energy metabolism. The potential utility of these metabolites as diagnostic biomarkers was validated through receiver operating characteristic (ROC) curve analysis. These findings provide putative metabolite biomarkers for future study and allow for hypothesis generation about the pathophysiology of toxoplasmosis

    Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation

    Get PDF
    Toxoplasma gondii is a medically and economically important protozoan parasite. However, the molecular mechanisms of its sporulation remain largely unknown. Here, we applied iTRAQ coupled with 2D LC–MS/MS proteomic analysis to investigate the proteomic expression profile of T. gondii oocysts during sporulation. Of the 2095 non-redundant proteins identified, 587 were identified as differentially expressed proteins (DEPs). Based on Gene Ontology enrichment and KEGG pathway analyses the majority of these DEPs were found related to the metabolism of amino acids, carbon and energy. Protein interaction network analysis generated by STRING identifiedATP-citrate lyase (ACL), GMP synthase, IMP dehydrogenase (IMPDH), poly (ADP-ribose) glycohydrolase (PARG), and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) as the top five hubs. We also identified 25 parasite virulence factors that were expressed at relatively high levels in sporulated oocysts compared to non-sporulated oocysts, which might contribute to the infectivity of mature oocysts. Considering the importance of oocysts in the dissemination of toxoplasmosis these findings may help in the search of protein targets with a key role in infectiousness and ecological success of oocysts, creating new opportunities for the development of better means for disease prevention. Biological significance: The development of newpreventative interventions against T. gondii infection relies on an improved understanding of the proteome and chemical pathways of this parasite. To identify proteins required for the development of environmentally resistant and infective T. gondii oocysts, we compared the proteome of non-sporulated (immature) oocysts with the proteome of sporulated (mature, infective) oocysts. iTRAQ 2DLC-MS/MS analysis revealed proteomic changes that distinguish non-sporulated from sporulated oocysts. Many of the differentially expressed proteins were involved in metabolic pathways and 25 virulence factors were identified upregulated in the sporulated oocysts. This work provides the first quantitative characterization of the proteomic variations that occur in T. gondii oocyst stage during sporulation
    corecore