551 research outputs found

    Learning non-Markovian Decision-Making from State-only Sequences

    Full text link
    Conventional imitation learning assumes access to the actions of demonstrators, but these motor signals are often non-observable in naturalistic settings. Additionally, sequential decision-making behaviors in these settings can deviate from the assumptions of a standard Markov Decision Process (MDP). To address these challenges, we explore deep generative modeling of state-only sequences with non-Markov Decision Process (nMDP), where the policy is an energy-based prior in the latent space of the state transition generator. We develop maximum likelihood estimation to achieve model-based imitation, which involves short-run MCMC sampling from the prior and importance sampling for the posterior. The learned model enables \textit{decision-making as inference}: model-free policy execution is equivalent to prior sampling, model-based planning is posterior sampling initialized from the policy. We demonstrate the efficacy of the proposed method in a prototypical path planning task with non-Markovian constraints and show that the learned model exhibits strong performances in challenging domains from the MuJoCo suite

    UV R-CNN: Stable and Efficient Dense Human Pose Estimation

    Full text link
    Dense pose estimation is a dense 3D prediction task for instance-level human analysis, aiming to map human pixels from an RGB image to a 3D surface of the human body. Due to a large amount of surface point regression, the training process appears to be easy to collapse compared to other region-based human instance analyzing tasks. By analyzing the loss formulation of the existing dense pose estimation model, we introduce a novel point regression loss function, named Dense Points} loss to stable the training progress, and a new balanced loss weighting strategy to handle the multi-task losses. With the above novelties, we propose a brand new architecture, named UV R-CNN. Without auxiliary supervision and external knowledge from other tasks, UV R-CNN can handle many complicated issues in dense pose model training progress, achieving 65.0% APgpsAP_{gps} and 66.1% APgpsmAP_{gpsm} on the DensePose-COCO validation subset with ResNet-50-FPN feature extractor, competitive among the state-of-the-art dense human pose estimation methods.Comment: 9pages, 4 figure

    SMART: A Situation Model for Algebra Story Problems via Attributed Grammar

    Full text link
    Solving algebra story problems remains a challenging task in artificial intelligence, which requires a detailed understanding of real-world situations and a strong mathematical reasoning capability. Previous neural solvers of math word problems directly translate problem texts into equations, lacking an explicit interpretation of the situations, and often fail to handle more sophisticated situations. To address such limits of neural solvers, we introduce the concept of a \emph{situation model}, which originates from psychology studies to represent the mental states of humans in problem-solving, and propose \emph{SMART}, which adopts attributed grammar as the representation of situation models for algebra story problems. Specifically, we first train an information extraction module to extract nodes, attributes, and relations from problem texts and then generate a parse graph based on a pre-defined attributed grammar. An iterative learning strategy is also proposed to improve the performance of SMART further. To rigorously study this task, we carefully curate a new dataset named \emph{ASP6.6k}. Experimental results on ASP6.6k show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability. To test these models' generalization capability, we also design an out-of-distribution (OOD) evaluation, in which problems are more complex than those in the training set. Our model exceeds state-of-the-art models by 17\% in the OOD evaluation, demonstrating its superior generalization ability

    A HINT from Arithmetic: On Systematic Generalization of Perception, Syntax, and Semantics

    Full text link
    Inspired by humans' remarkable ability to master arithmetic and generalize to unseen problems, we present a new dataset, HINT, to study machines' capability of learning generalizable concepts at three different levels: perception, syntax, and semantics. In particular, concepts in HINT, including both digits and operators, are required to learn in a weakly-supervised fashion: Only the final results of handwriting expressions are provided as supervision. Learning agents need to reckon how concepts are perceived from raw signals such as images (i.e., perception), how multiple concepts are structurally combined to form a valid expression (i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics). With a focus on systematic generalization, we carefully design a five-fold test set to evaluate both the interpolation and the extrapolation of learned concepts. To tackle this challenging problem, we propose a neural-symbolic system by integrating neural networks with grammar parsing and program synthesis, learned by a novel deduction--abduction strategy. In experiments, the proposed neural-symbolic system demonstrates strong generalization capability and significantly outperforms end-to-end neural methods like RNN and Transformer. The results also indicate the significance of recursive priors for extrapolation on syntax and semantics.Comment: Preliminary wor

    Neural-Symbolic Recursive Machine for Systematic Generalization

    Full text link
    Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required
    • …
    corecore