7,400 research outputs found

    Relating Leptogenesis to Low Energy Flavor Violating Observables in Models with Spontaneous CP Violation

    Full text link
    In the minimal left-right symmetric model, there are only two intrinsic CP violating phases to account for all CP violation in both the quark and lepton sectors, if CP is broken spontaneously by the complex phases in the VEV's of the scalar fields. In addition, the left- and right-handed Majorana mass terms for the neutrinos are proportional to each other due to the parity in the model. This is thus a very constrained framework, making the existence of correlations among the CP violation in leptogenesis, neutrino oscillation and neutrinoless double beta decay possible. In these models, CP violation in the leptonic sector and CP violation in the quark sector are also related. We find, however, that such connection is rather weak due to the large hierarchy in the bi-doublet VEV required by a realistic quark sector.Comment: RevTeX4, 21 pages; v2: references added, version to appear in Phys. Rev.

    Supersymmetry for Fermion Masses

    Full text link
    It is proposed that supersymmetry (SUSY) maybe used to understand fermion mass hierarchies. A family symmetry Z_{3L} is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale ~ 10^{11} GeV. The electroweak energy scale ~ 100 GeV is unnaturally small. No additional global symmetry, like the R-parity, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values which are about (10^0-10^{-2}). Under the family symmetry, only the third generation charged fermions get their masses. This family symmetry is broken in the soft SUSY breaking terms which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the tau mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both Z_{3L} and SUSY breaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. |V_{e3}| which is for nu_e-nu_{tau} mixing is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains m_c/m_s, m_s/m_e, m_d > m_u and so on. Other aspects of the model are discussed.Comment: 25 pages, 3 figures, revtex4; neutrino oscillation and many discussions added, smallness of the electron mass due to supersymmetry pointed out; v3: numerical errors correcte

    U(2) and Maximal Mixing of nu_{mu}

    Full text link
    A U(2) flavor symmetry can successfully describe the charged fermion masses and mixings, and supress SUSY FCNC processes, making it a viable candidate for a theory of flavor. We show that a direct application of this U(2) flavor symmetry automatically predicts a mixing of 45 degrees for nu_mu to nu_s, where nu_s is a light, right-handed state. The introduction of an additional flavor symmetry acting on the right-handed neutrinos makes the model phenomenologically viable, explaining the solar neutrino deficit as well as the atmospheric neutrino anomaly, while giving a potential hot dark matter candidate and retaining the theory's predictivity in the quark sector.Comment: 20 pages, 1 figur

    The Neutrino Magnetic Moment Induced by Leptoquarks

    Get PDF
    Allowing leptoquarks to interact with both right-handed and left-handed neutrinos (i.e., ``non-chiral'' leptoquarks), we show that a non-zero neutrino magnetic moment can arise naturally. Although the mass of the non-chiral vector leptoquark that couples to the first generation fermions is constrained severely by universality of the π+\pi^+ leptonic decays and is found to be greater than 50 TeV, the masses of the second and third generation non-chiral vector leptoquarks may evade such constraint and may in general be in the range of 11001\sim 100 TeV. With reasonable input mass and coupling values, we find that the neutrino magnetic moment due to the second generation leptoquarks is of the order of 10121016μB10^{-12}\sim 10^{-16} \mu_{\rm B} while that caused by the third generation leptoquarks, being enhanced significantly by the large top quark mass, is in the range of 10101014μB10^{-10}\sim 10^{-14} \mu_{\rm B}.Comment: 11 pages, 3 eps figures, uses revte

    The Numerical Solution of Scalar Field for Nariai Case in 5D Ricci-flat SdS Black String Space with Polynomial Approximation

    Full text link
    As one exact candidate of the higher dimensional black hole, the 5D Ricci-flat Schwarzschild-de Sitter black string space presents something interesting. In this paper, we give a numerical solution to the real scalar field around the Nariai black hole by the polynomial approximation. Unlike the previous tangent approximation, this fitting function makes a perfect match in the leading intermediate region and gives a good description near both the event and the cosmological horizons. We can read from our results that the wave is close to a harmonic one with the tortoise coordinate. Furthermore, with the actual radial coordinate the waves pile up almost equally near the both horizons.Comment: 8 pages, 4 figure

    Four Light Neutrinos in Singular Seesaw Mechanism with Abelian Flavor Symmetry

    Get PDF
    The four light neutrino scenario, which explains the atmosphere, solar and LSND neutrino experiments, is studied in the framework of the seesaw mechanism. By taking both the Dirac and Majorana mass matrix of neutrinos to be singular, the four neutrino mass spectrum consisting of two almost degenerate pairs separated by a mass gap 1\sim 1 eV is naturally generated. Moreover the right-handed neutrino Majorana mass can be at 1014\sim 10^{14} GeV scale unlike in the usual singular seesaw mechanism. Abelian flavor symmetry is used to produce the required neutrino mass pattern. A specific example of the flavor charge assignment is provided to show that maximal mixings between the νμντ\nu_\mu-\nu_\tau and νeνs\nu_e-\nu_s are respectively attributed to the atmosphere and solar neutrino anomalies while small mixing between two pairs to the LSND results. The implication in the other fermion masses is also discussed.Comment: Firnal version to appear in PR

    Models of Little Higgs and Electroweak Precision Tests

    Full text link
    The little Higgs idea is an alternative to supersymmetry as a solution to the gauge hierarchy problem. In this note, I review various little Higgs models and their phenomenology with emphases on the precision electroweak constraints in these models.Comment: 16 pages; 4 figures; review submitted to Modern Physics Letter

    Atmospheric and Solar Neutrino Masses from Horizontal U(1) Symmetry

    Get PDF
    We study the neutrino mass matrix in supersymmetric models in which the quark and charged lepton mass hierarchies and also the suppression of baryon or lepton number violating couplings are all explained by horizontal U(1)XU(1)_X symmetry. It is found that the neutrino masses and mixing angles suggested by recent atmospheric and solar neutrino experiments arise naturally in this framework which fits in best with gauge-mediated supersymmetry breaking with large tanβ\tan\beta. This framework highly favors the small angle MSW oscillation of solar neutrinos, and determine the order of magnitudes of all the neutrino mixing angles and mass hierarchies.Comment: No figures. 14 pages, revte
    corecore