1,984 research outputs found

    Thailand’s universal coverage scheme and its impact on health-seeking behavior

    Get PDF
    Background: Thailand’s Universal Coverage Scheme (UCS) has improved healthcare access and utilization since its initial introduction in 2002. However, a substantial proportion of beneficiaries has utilized care outside the UCS boundaries. Because low utilization may be an indication of a policy gap between people’s health needs and the services available to them, we investigated the patterns of health-seeking behavior and their social/contextual determinants among UCS beneficiaries in the year 2013. Results: The study findings from the outpatient analysis showed that the use of designated facilities for care was significantly higher in low-income, unemployed, and chronic status groups. The findings from the inpatient analysis showed that the use of designated facilities for care was significantly higher in the low-income, older, and female groups. Particularly, for the low-income group, we found that they (1) had greater health care needs, (2) received a larger number of services from designated facilities, and (3) paid the least for both inpatient and outpatient services. Conclusions: This pro-poor impact indicated that the UCS could adequately respond to beneficiaries’ needs in terms of vertical equity. However, we also found that a considerable proportion of beneficiaries utilized out-of-network services, which implied a lack of universal access to policy services from a horizontal equity point of view. Thus, the policy should continue expanding and diversifying its service benefits to strengthen horizontal equity. Particularly, private sector involvement for those who are employed as well as the increased unmet health needs of those in rural areas may be important policy priorities for that. Lastly, methodological issues such as severity adjustment and a detailed categorization of health-seeking behaviors need to be further considered for a better understanding of the policy impact

    Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water

    Full text link
    By confining water in nano-pores of silica glass, we can bypass the crystallization and study the pressure effect on the dynamical behavior in deeply supercooled state using neutron scattering. We observe a clear evidence of a cusp-like fragile-to-strong (F-S) dynamic transition. Here we show that the transition temperature decreases steadily with an increasing pressure, until it intersects the homogenous nucleation temperature line of bulk water at a pressure of 1600 bar. Above this pressure, it is no longer possible to discern the characteristic feature of the F-S transition. Identification of this end point with the possible second critical point is discussed.Comment: 4 pages, 3 figure

    iTAR: A Web Server for Identifying Target Genes of Transcription Factors using ChIP-Seq or ChIP-Chip Data

    Get PDF
    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP’s output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server (http://syslab3.nchu.edu.tw/iTAR/) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF

    Theory for superconductivity in (Tl,K)Fex_xSe2_2 as a doped Mott insulator

    Full text link
    Possible superconductivity in recently discovered (Tl,K)Fex_xSe2_2 compounds is studied from the viewpoint of doped Mott insulator. The Mott insulating phase is examined to be preferred in the parent compound at x=1.5x=1.5 due to the presence of Fe vacancies. Partial filling of vacancies at the Fe-sites introduces electron carriers and leads to electron doped superconductivity. By using a two-orbital Hubbard model in the strong coupling limit, we find that the s-wave pairing is more favorable at small Hund's coupling, and dx2−y2_{x^2-y^2} wave pairing is more favorable at large Hund's coupling.Comment: 4+ pages, 3 figures, to appear in EP

    Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d

    Get PDF
    Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower T(m) values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA

    Effects of emotion and agency on presence in virtual reality

    Get PDF
    Arguably the most important characteristic of virtual reality (VR) is its ability to induce feelings of presence. Still, research has remained inconclusive on how presence is affected by human factors such as emotion and agency. Here we adopt a novel design to investigate their effects by testing virtual environments inducing either happiness or fear, with or without user agency. Results from 121 participants showed that the dominant emotion induced by a virtual environment is positively correlated with presence. In addition, agency had a significant positive effect on presence and, furthermore, moderated the effect of emotion on presence. We show for the first time that the effects of emotion and agency on presence are not straightforward but they can be modeled by separating design factors from subjective measures. We discuss how these findings can explain seemingly conflicting results of related work and their implications for VR design
    • …
    corecore