2,232 research outputs found

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States

    Full text link
    Dynamical and transport properties of a simple single-band spin-fermion lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here discussed using Monte Carlo simulations. This effort is a continuation of previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static properties of the model were studied. The present results support the view that the relevant regime of J/t (standard notation) is that of intermediate coupling, where carriers are only partially trapped near Mn spins, and locally ordered regions (clusters) are present above the Curie temperature T_C. This conclusion is based on the calculation of the resistivity vs. temperature, that shows a soft metal to insulator transition near T_C, as well on the analysis of the density-of-states and optical conductivity. In addition, in the clustered regime a large magnetoresistance is observed in simulations. Formal analogies between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and tex

    Can we distinguish between h^{SM} and h^0 in split supersymmetry?

    Full text link
    We investigate the possibility to distinguish between the Standard Model Higgs boson and the lightest Higgs boson in Split Supersymmetry. We point out that the best way to distinguish between these two Higgs bosons is through the decay into two photons. It is shown that there are large differences of several percent between the predictions for \Gamma(h\to\gamma\gamma) in the two models, making possible the discrimination at future photon-photon colliders. Once the charginos are discovered at the next generation of collider experiments, the well defined predictions for the Higgs decay into two photons will become a cross check to identify the light Higgs boson in Split Supersymmetry.Comment: 8 pages, 3 Figures, typos fixed, version published in J.Phys. G31 (2005) 563-56

    Dark matter and sub-GeV hidden U(1) in GMSB models

    Full text link
    Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden U(1)XU(1)_X sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under U(1)XU(1)_X is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between U(1)XU(1)_X and U(1)YU(1)_Y: θ106\theta \lesssim 10^{-6}. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.Comment: 1+15 pages, 4 figures, version published in JCAP, references added, minor change

    Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models

    Get PDF
    Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We solve this problem by introducing a class of generalized exponential random graph models capable of modeling networks whose edges are valued, thus greatly expanding the scope of networks applied researchers can subject to statistical analysis

    Aspirin and NSAID use and lung cancer risk: a pooled analysis in the International Lung Cancer Consortium (ILCCO)

    Get PDF
    Purpose: To investigate the hypothesis that non-steroidal anti-inflammatory drugs (NSAIDs) lower lung cancer risk. Methods: We analysed pooled individual-level data from seven case-control and one cohort study in the International Lung Cancer Consortium (ILCCO). Relative risks for lung cancer associated with self-reported history of aspirin and other NSAID use were estimated within individual studies using logistic regression or proportional hazards models, adjusted for packyears of smoking, age, calendar period, ethnicity and education and were combined using random effects meta-analysis. Results: A total of 4,309 lung cancer cases (mean age at diagnosis 65 years, 45% adenocarcinoma and 22% squamous-cell carcinoma) and 58,301 non-cases/controls were included. Amongst controls, 34% had used NSAIDs in the past (81% of them used aspirin). After adjustment for negative confounding by smoking, ever-NSAID use (affirmative answer to the study-specific question on NSAID use) was associated with a 26% reduction (95% confidence interval 8 to 41%) in lung cancer risk in men, but not in women (3% increase (-11% to 30%)). In men, the association was stronger in current and former smokers, and for squamous-cell carcinoma than for adenocarcinomas, but there was no trend with duration of use. No differences were found in the effects on lung cancer risk of aspirin and non-aspirin NSAIDs. Conclusions Evidence from ILCCO suggests that NSAID use in men confers a modest protection for lung cancer, especially amongst ever-smokers. Additional investigation is needed regarding the possible effects of age, duration, dose and type of NSAID and whether effect modification by smoking status or sex exists

    Experimental aspects of SU(5)xU(1) supergravity

    Full text link
    We study various aspects of SU(5)×U(1)SU(5)\times U(1) supergravity as they relate to the experimental verification or falsification of this model. We consider two string-inspired, universal, one-parameter, no-scale soft-supersymmetry-breaking scenarios, driven by the FF-terms of the moduli and dilaton fields. The model is described in terms of the supersymmetry mass scale (\ie, the chargino mass mχ1±m_{\chi^\pm_1}), tanβ\tan\beta, and the top-quark mass. We first determine the combined effect on the parameter space of all presently available direct and indirect experimental constraints, including the LEP lower bounds on sparticle and Higgs-boson masses, the bsγb\to s\gamma rate, the anomalous magnetic moment of the muon, the high-precision electroweak parameters ϵ1,ϵb\epsilon_1,\epsilon_b (which imply m_t\lsim180\GeV), and the muon fluxes in underground detectors (neutrino telescopes). For the still-allowed points in (mχ1±,tanβ)(m_{\chi^\pm_1},\tan\beta) parameter space, we re-evaluate the experimental situation at the Tevatron, LEPII, and HERA. In the 1994 run, the Tevatron could probe chargino masses as high as 100 GeV. At LEPII the parameter space could be explored with probes of different resolutions: Higgs boson searches, selectron searches, and chargino searches. Moreover, for m_t\lsim150\GeV, these Higgs-boson searches could explore all of the allowed parameter space with \sqrt{s}\lsim210\GeV.Comment: latex, 36 pages, 25 figures (not included). Figures are available via anonymous ftp from hplaa02.cern.ch (/pub/lopez) as either 33 ps files (Easpects*.ps, 8.1MB) or one uuencoded file (AllFigures.uu, 3.7MB

    The mu problem and sneutrino inflation

    Get PDF
    We consider sneutrino inflation and post-inflation cosmology in the singlet extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is broken by the intermediate-scale VEVs of two flaton fields, which are determined by the interplay between radiative flaton soft masses and higher order terms. Then, from the flaton VEVs, we obtain the correct mu term and the right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH sneutrino with non-minimal gravity coupling drives inflation, thanks to the same flaton coupling giving rise to the RH neutrino mass. After inflation, extra vector-like states, that are responsible for the radiative breaking of the PQ symmetry, results in thermal inflation with the flaton field, solving the gravitino problem caused by high reheating temperature. Our model predicts the spectral index to be n_s\simeq 0.96 due to the additional efoldings from thermal inflation. We show that a right dark matter abundance comes from the gravitino of 100 keV mass and a successful baryogenesis is possible via Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore