17,161 research outputs found

    Dynamics of a quantum quench in an ultra-cold atomic BCS superfluid

    Full text link
    We study dynamics of an ultra-cold atomic BCS superfluid driven towards the BCS superfluid-Fermi liquid quantum critical point by a gradual decrease of the pairing interaction. We analyze how the BCS superfluid falls out of equilibrium and show that the non-equilibrium gap and Cooper pair size reflect critical properties of the transition. We observe three stages of evolution: adiabatic where the Cooper pair size is inversely proportional to the equilibrium gap, weakly non-equilibrium where it is inversely proportional to the non-equilibrium gap, and strongly non-equilibrium where it decouples from both equilibrium and non-equilibrium gap. These phenomena should stimulate future experimental characterization of non-equilibrium ultra-cold atomic BCS superfluids.Comment: 5 pages, 3 figures, to appear in PR

    Relation between phase and dwell times for quantum tunneling of a relativistically propagating particle

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling of a relativistically propagating particle is investigated and quantified. In analogy with previously obtained non-relativistic results, it is shown that the group delay can be described in terms of the dwell time and a self-interference delay. Lessons concerning the phenomenology of the relativistic tunneling are drawn

    Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    Full text link
    When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes from a band metal to a polaronic insulator. The Hall constant R_H, through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below, the activation energies of both R_H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi

    A Two Energy Gap Preformed-Pair Scenario For the Cuprates: Implications for Angle-Resolved Photoemission Spectroscopy

    Full text link
    We show how, within a preformed pair scenario for the cuprate pseudogap, the nodal and antinodal responses in angle resolved photoemission spectroscopy necessarily have very different temperature TT dependences. We examine the behavior and the contrasting TT dependences for a range of temperatures both below and above TcT_c. Our calculations are based on a fully microscopic TT-matrix approach for addressing pairing correlations in a regime where the attraction is stronger than BCS and the coherence length is anomalously short. Previously, the distinct nodal and anti-nodal responses have provided strong support for the "two-gap scenario" of the cuprates in which the pseudogap competes with superconductivity. Instead, our theory supports a picture in which the pseudogap derives from pairing correlations, identifying the two gap components with non-condensed and condensed pairs. It leads to reasonably good agreement with a range of different experiments in the moderately underdoped regime and we emphasize that here there is no explicit curve fitting. Ours is a microscopic rather than a phenomenological theory. We briefly address the more heavily underdoped regime in which the behavior is more complex.Comment: 12 pages; 10 figure

    The H-alpha Luminosity Function and Star Formation Rate Volume Density at z=0.8 from the NEWFIRM H-alpha Survey

    Full text link
    [Abridged] We present new measurements of the H-alpha luminosity function (LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on 1.18μ\mum narrowband data from the NEWFIRM H-alpha Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth (1.9×1017\approx1.9\times10^{-17} erg s1^{-1} cm2^{-2} in H-alpha at 3σ\sigma) and areal coverage (0.82 deg2^2) complements other recent H-alpha studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required. The dust-corrected LF is well-described by a Schechter function with L*=10^{43.00\pm0.52} ergs s^{-1}, \phi*=10^{-3.20\pm0.54} Mpc^{-3}, and \alpha=-1.6\pm0.19. We compare our H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density \propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha SFR density of 10^{-1.00\pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z~1. We discuss how these results compare to other H-alpha surveys at z~0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure.Comment: 19 pages (emulate-ApJ format), 16 figures, 5 tables, published in ApJ. Modified to match ApJ versio

    The Trigonometric Parallax of the Brown Dwarf Planetary System 2MASSW J1207334-393254

    Full text link
    We have measured a trigonometric parallax to the young brown dwarf 2MASSW J1207334-393254. The distance [54.0 (+3.2,-2.8) pc] and space motion confirm membership in the TW Hydrae Association. The primary is a ~25 M_jup brown dwarf. We discuss the "planetary mass" secondary, which is certainly below the deuterium-burning limit but whose colors and absolute magnitudes pose challenges to our current understanding of planetary-mass objects.Comment: Accepted to the Astrophysical Journal Letter

    Berry's phase contribution to the anomalous Hall effect of gadolinium

    Full text link
    When conduction electrons are forced to follow the local spin texture, the resulting Berry phase can induce an anomalous Hall effect (AHE). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the AHE may therefore resemble that of chromium dioxide and other metallic double-exchange ferromagnets. The Hall resistivity, magnetoresistance, and magnetization of single crystal gadolinium were measured in fields up to 30 T. Measurements between 2 K and 400 K are consistent with previously reported data. A scaling analysis for the Hall resistivity as a function of the magnetization suggests the presence of a Berry's-phase contribution to the anomalous Hall effect.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Dirac Leptogenesis with a Non-anomalous U(1)U(1)^{\prime} Family Symmetry

    Full text link
    We propose a model for Dirac leptogenesis based on a non-anomalous U(1)U(1)^{\prime} gauged family symmetry. The anomaly cancellation conditions are satisfied with no new chiral fermions other than the three right-handed neutrinos, giving rise to stringent constraints among the charges. Realistic masses and mixing angles are obtained for all fermions. The model predicts neutrinos of the Dirac type with naturally suppressed masses. Dirac leptogenesis is achieved through the decay of the flavon fields. The cascade decays of the vector-like heavy fermions in the Froggatt-Nielsen mechanism play a crucial role in the separation of the primodial lepton numbers. We find that a large region of parameter space of the model gives rise to a sufficient cosmological baryon number asymmetry through Dirac leptogenesis.Comment: 8 pages, 8 figures, version to appear in JHE

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review
    corecore