50 research outputs found

    Testing the Infection Prevalence of \u3cem\u3eSchistosoma mansoni\u3c/em\u3e after Mass Drug Administration by Comparing Sensitivity and Specificity of Species- Specific Repeat Fragment Amplification by PCR and Loop-Mediated Isothermal Amplification

    Get PDF
    Schistosomiasis is a blood parasitic disease caused by trematode parasites of the genus Schistosoma. Schistosoma mansoni is one of the main contributors of the disease and 90% of the global burden of schistosomiasis is in Africa. Mass drug administration (MDA) has been implemented to reduce the disease burden in endemic areas. Because of MDA, the diagnostic sensitivity and specificity for classical diagnostic tests are reduced. In any disease situation, diagnosis is vital in determining asymptomatic, concurrent, current, new, and reinfection cases to evaluate the efficacy of any control program. We have evaluated the positive infection for S. mansoni from filtered urine samples collected from Zambian school children after MDA using loop-mediated isothermal amplification (LAMP) and compared its sensitivity and specificity with polymerase chain reaction (PCR). One hundred eleven urine samples collected from school children aged between 7 and 15 years from Siavonga district in southern Zambia were evaluated by PCR and LAMP for DNA extracted by two different protocols (filter-based versus crude extraction). The infection prevalence was 77% with PCR and almost 94% with mansoni-LAMP. Also, LAMP detected 16% (Qiagen extraction) and 10% (LAMP- Procedure for Ultra Rapid Extraction) more positive S. mansoni infection than PCR. We have demonstrated the efficacy of LAMP in a laboratory setup after MDA. The possible inclusion of LAMP as a field-based point-of-care test for surveillance can provide reliable prevalence of schistosomiasis after MDA and help in determining the efficacy of a control program

    Diagnosis of Taenia solium infections based on “mail order” RNA-sequencing of single tapeworm egg isolates from stool samples

    Get PDF
    Combined community health programs aiming at health education, preventive anti-parasitic chemotherapy, and vaccination of pigs have proven their potential to regionally reduce and even eliminate Taenia solium infections that are associated with a high risk of neurological disease through ingestion of T. solium eggs. Yet it remains challenging to target T. solium endemic regions precisely or to make exact diagnoses in individual patients. One major reason is that the widely available stool microscopy may identify Taenia ssp. eggs in stool samples as such, but fails to distinguish between invasive (T. solium) and less invasive Taenia (T. saginata, T. asiatica, and T. hydatigena) species. The identification of Taenia ssp. eggs in routine stool samples often prompts a time-consuming and frequently unsuccessful epidemiologic workup in remote villages far away from a diagnostic laboratory. Here we present "mail order" single egg RNA-sequencing, a new method allowing the identification of the exact Taenia ssp. based on a few eggs found in routine diagnostic stool samples. We provide first T. solium transcriptome data, which show extremely high mitochondrial DNA (mtDNA) transcript counts that can be used for subspecies classification. "Mail order" RNA-sequencing can be administered by health personnel equipped with basic laboratory tools such as a microscope, a Bunsen burner, and access to an international post office for shipment of samples to a next generation sequencing facility. Our suggested workflow combines traditional stool microscopy, RNA-extraction from single Taenia eggs with mitochondrial RNA-sequencing, followed by bioinformatic processing with a basic laptop computer. The workflow could help to better target preventive healthcare measures and improve diagnostic specificity in individual patients based on incidental findings of Taenia ssp. eggs in diagnostic laboratories with limited resources

    Cestode larvae excite host neuronal circuits via glutamatergic signaling

    Get PDF
    Neurocysticercosis (NCC) is caused by infection of the brain by larvae of the parasitic cestode Taenia solium. It is the most prevalent parasitic infection of the central nervous system and one of the leading causes of adult-acquired epilepsy worldwide. However, little is known about how cestode larvae affect neurons directly. To address this, we used whole-cell patch-clamp electrophysiology and calcium imaging in rodent and human brain slices to identify direct effects of cestode larval products on neuronal activity. We found that both whole cyst homogenate and excretory/secretory products of cestode larvae have an acute excitatory effect on neurons, which can trigger seizure-like events in vitro. Underlying this effect was cestode-induced neuronal depolarization, which was mediated by glutamate receptor activation but not by nicotinic acetylcholine receptors, acid-sensing ion channels nor Substance P. Glutamate-sensing fluorescent reporters (iGluSnFR) and amino acid assays revealed that the larval homogenate of the cestodes Taenia crassiceps and Taenia solium contained high concentrations of the amino acid’s glutamate and aspartate. Furthermore, we found that larvae of both species consistently produce and release these excitatory amino acids into their immediate environment. Our findings suggest that perturbations in glutamatergic signaling may play a role in seizure generation in NCC

    Taenia larvae possess distinct acetylcholinesterase profiles with implications for host cholinergic signalling

    Get PDF
    Larvae of the cestodes Taenia solium and Taenia crassiceps infect the central nervous system of humans. Taenia solium larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy worldwide. Relatively little is understood about how cestode-derived products modulate host neural and immune signalling. Acetylcholinesterases, a class of enzyme that breaks down acetylcholine, are produced by a host of parasitic worms to aid their survival in the host. Acetylcholine is an important signalling molecule in both the human nervous and immune systems, with powerful modulatory effects on the excitability of cortical networks. Therefore, it is important to establish whether cestode derived acetylcholinesterases may alter host neuronal cholinergic signalling. Here we make use of multiple techniques to profile acetylcholinesterase activity in different extracts of both Taenia crassiceps and Taenia solium larvae. We find that the larvae of both species contain substantial acetylcholinesterase activity. However, acetylcholinesterase activity is lower in Taenia solium as compared to Taenia crassiceps larvae. Further, whilst we observed acetylcholinesterase activity in all fractions of Taenia crassiceps larvae, including on the membrane surface and in the excreted/secreted extracts, we could not identify acetylcholinesterases on the membrane surface or in the excreted/secreted extracts of Taenia solium larvae. Bioinformatic analysis revealed conservation of the functional protein domains in the Taenia solium acetylcholinesterases, when compared to the homologous human sequence. Finally, using whole-cell patch clamp recordings in rat hippocampal brain slice cultures, we demonstrate that Taenia larval derived acetylcholinesterases can break down acetylcholine at a concentration which induces changes in neuronal signalling. Together, these findings highlight the possibility that Taenia larval acetylcholinesterases can interfere with cholinergic signalling in the host, potentially contributing to pathogenesis in neurocysticercosis

    Immuno-pathological responses to<em> Taenia solium</em> infections in pigs

    No full text

    Efficacy and safety of anthelmintics tested against <em>Taenia solium </em>cysticercosis in pigs

    Get PDF
    Porcine cysticercosis, an infection caused by Taenia solium metacestodes, is continuously being reported in low-income countries of Latin America, Asia, and sub-Saharan Africa. The disease was declared eradicable by the International Task Force for Diseases Eradication (ITFDE) in 1993, and it is listed among the 17 WHO Neglected Tropical Diseases and Neglected Zoonoses that are potentially eradicable. In view of that, WHO has proposed a step-wise approach to its elimination, including chemotherapy of infected pigs. Different drugs have been tested on porcine cysticercosis with varying efficacies. These include flubendazole, fenbendazole, albendazole, albendazole sulphoxide, oxfendazole, praziquantel, and nitazoxanide. This review summarises available information on the efficacies and adverse effects shown by these drugs in pigs. Oxfendazole has shown to be effective for the control of porcine cysticercosis; however, it needs to be integrated with other control approaches. There is a need for standardised guidelines for evaluating the efficacy of anthelmintics against porcine cysticercosis, and more efficacy studies are needed since the conclusions so far are based on a limited number of studies using few infected pigs
    corecore