4 research outputs found
Acousto-Ultrasonic analysis of failure in ceramic matrix composite tensile specimens
Three types of acousto-ultrasonic (AU) measurements, stress-wave factor (SWF), lowest antisymmetric plate mode group velocity (VS), and lowest symmetric plate mode group velocity (VL), were performed on specimens before and after tensile failure. Three different Nicalon fiber architectures with ceramic matrices were tested. These composites were categorized as 1D (unidirectional fiber orientation) SiC/CAS glass ceramic, and 2D and 3D woven SiC/SiC ceramic matrix materials. SWF was found to be degraded after tensile failure in all three material categories. VS was found to be degraded only in the 1D SiC/CAS. VL was difficult to determine on the irregular specimen surfaces but appeared unchanged on all failed specimens. 3D woven specimens with heat-treatment at high temperature exhibited degradation only in SWF
Improved finite strip Mindlin plate bending element using assumed shear strain distributions
A linear finite strip plate element based on Mindlin/Reissner plate theory is developed. The analysis is suitable for both thin and thick plates. In the formulation new transverse shear strains are introduced and assumed constant in each two-code linear strip. The element stiffness matrix is explicitly formulated for efficient computation and computer implementation. Numerical results showing the efficiency and predictive capability of the element for the analysis of plates are presented for different support and loading conditions and a wide range of thicknesses. No sign of shear locking phenomenon was observed with the newly developed element
Mechanical behavior of fiber reinforced SiC/RBSN ceramic matrix composites: Theory and experiment
The mechanical behavior of continuous fiber reinforced SiC/RBSN (Reaction Bonded Silicon Nitride) composites with various fiber contents is evaluated. Both catastrophic and noncatastrophic failures are observed in tensile specimens. Damage and failure mechanisms are identified via in-situ monitoring using NDE (nondestructive evaluation) techniques through the loading history. Effects of fiber/matrix interface debonding (splitting) parallel to fibers are discussed. Statistical failure behavior of fibers is also observed, especially when the interface is weak. Micromechanical models incorporating residual stresses to calculate the critical matrix cracking strength, ultimate strength, and work of pull-out are reviewed and used to predict composite response. For selected test problems, experimental measurements are compared to analytical predictions