5 research outputs found

    Suppressing the zero-frequency component of hologram with Hilbert-Huang transform in single-shot off-axis holography

    No full text
    This paper proposes a method based on Hilbert-Huang transform to suppress the zero-frequency component of holograms with only one shot. It can effectively improve the quality of reconstructed phase objects

    Speckle Noise Suppression Based on Empirical Mode Decomposition and Improved Anisotropic Diffusion Equation

    No full text
    Existing methods to eliminate the laser speckle noise in quantitative phase imaging always suffer from the loss of detailed phase information and the resolution reduction in the reproduced image. To overcome these problems, this paper proposes a speckle noise suppression method based on empirical mode decomposition. Our proposed method requires only one image without additional equipment and avoids the complicated process of searching the optimal processing parameters. In this method, we use empirical mode decomposition to highlight the high frequency information of the interference image and use the Canny operator to perform edge detection, so the diffusion denoising process is guided by high-precision detection results to achieve better results. To validate the performance of our proposed method, the phase maps processed by our proposed method are compared with the phase maps processed by the improved anisotropic diffusion equation method with edge detection, the mean filter method and the median filter method. The experimental results show that the method proposed in this paper not only has a better denoising effect but also preserves more details and achieves higher phase reconstruction accuracy

    Evaluating the Ability of the Sentinel-1 Cross-Polarization Ratio to Detect Spring Maize Phenology Using Adaptive Dynamic Threshold

    No full text
    Accurate, timely, and fine-resolution crop phenology is essential for determining the optimal timing of agronomic management practices supporting precision agriculture and food security. Synthetic Aperture Radar (SAR) methods, unaffected by cloud occlusion, have been widely applied in monitoring maize phenology. Nonetheless, their reliance on manual threshold settings, which depend on the user’s expertise, limits their applicability. Furthermore, the neglect of SAR’s potential for monitoring other phenological periods (e.g., seven-leaves date (V7), jointing date (JD), tassel date (TD), and milky date (MID)) hinders their robustness, particularly for regional-scale applications. To address these issues, this study used an adaptive dynamic threshold to evaluate the ability of the Sentinel-1 cross-polarization ratio (CR) in detecting the three-leaves date (V3), V7, JD, TD, MID, and maturity date (MD) of maize. We analyzed the effect of incidence angle, precipitation, and wind speed on Sentinel-1 features to identify the optimal feature for time series fitting. Then, we employed linear regression to determine the optimal threshold and developed an adaptive dynamic threshold for phenology detection. This approach effectively mitigated the speckle noise of Sentinel-1 and minimized artificial interference caused by customary conventional thresholds. Finally, we mapped phenology across 8.3 million ha in Heilongjiang Province. The results indicated that the approach has a higher ability to detect JD (RMSE = 11.10 d), MID (RMSE = 10.31 d), and MD (RMSE = 9.41 d) than that of V3 (RMSE = 32.07 d), V7 (RMSE = 56.37 d), and TD (RMSE = 43.33 d) in Sentinel-1. Compared with Sentinel-2, the average RMSE of JD, MID, and MD decreased by 4.14%, 35.28%, and 26.48%. Moreover, when compared to different thresholds, the adaptive dynamic threshold can quickly determine the optimal threshold for detecting each phenological stage. CR is least affected by incident angle, precipitation, and wind speed, effectively suppressing noise to reflect phenological development better. This approach supports the rapid and feasible mapping of maize phenology across broad spatial regions with a few samples
    corecore