30 research outputs found

    Multi-Particle Anderson Localisation: Induction on the Number of Particles

    Full text link
    This paper is a follow-up of our recent papers \cite{CS08} and \cite{CS09} covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum NN-particle system on a lattice Zd\Z^d with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. \cite{FS}, \cite{FMSS}, \cite{DK}) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript \cite{CS07}. Similar results have been recently obtained in an independent work by Aizenman and Warzel \cite{AW08}: they proposed an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in \cite{AM93} and \cite{ASFH01} (see also references therein) which is also combined with an induction on the number of particles. An important role in our proof is played by a variant of Stollmann's eigenvalue concentration bound (cf. \cite{St00}). This result, as was proved earlier in \cite{C08}, admits a straightforward extension covering the case of multi-particle systems with correlated external random potentials: a subject of our future work. We also stress that the scheme of our proof is \textit{not} specific to lattice systems, since our main method, the MSA, admits a continuous version. A proof of multi-particle Anderson localization in continuous interacting systems with various types of external random potentials will be published in a separate papers

    On the Joint Distribution of Energy Levels of Random Schroedinger Operators

    Full text link
    We consider operators with random potentials on graphs, such as the lattice version of the random Schroedinger operator. The main result is a general bound on the probabilities of simultaneous occurrence of eigenvalues in specified distinct intervals, with the corresponding eigenfunctions being separately localized within prescribed regions. The bound generalizes the Wegner estimate on the density of states. The analysis proceeds through a new multiparameter spectral averaging principle

    Quantum harmonic oscillator systems with disorder

    Full text link
    We study many-body properties of quantum harmonic oscillator lattices with disorder. A sufficient condition for dynamical localization, expressed as a zero-velocity Lieb-Robinson bound, is formulated in terms of the decay of the eigenfunction correlators for an effective one-particle Hamiltonian. We show how state-of-the-art techniques for proving Anderson localization can be used to prove that these properties hold in a number of standard models. We also derive bounds on the static and dynamic correlation functions at both zero and positive temperature in terms of one-particle eigenfunction correlators. In particular, we show that static correlations decay exponentially fast if the corresponding effective one-particle Hamiltonian exhibits localization at low energies, regardless of whether there is a gap in the spectrum above the ground state or not. Our results apply to finite as well as to infinite oscillator systems. The eigenfunction correlators that appear are more general than those previously studied in the literature. In particular, we must allow for functions of the Hamiltonian that have a singularity at the bottom of the spectrum. We prove exponential bounds for such correlators for some of the standard models

    Localization Bounds for Multiparticle Systems

    Full text link
    We consider the spectral and dynamical properties of quantum systems of nn particles on the lattice Zd\Z^d, of arbitrary dimension, with a Hamiltonian which in addition to the kinetic term includes a random potential with iid values at the lattice sites and a finite-range interaction. Two basic parameters of the model are the strength of the disorder and the strength of the interparticle interaction. It is established here that for all nn there are regimes of high disorder, and/or weak enough interactions, for which the system exhibits spectral and dynamical localization. The localization is expressed through bounds on the transition amplitudes, which are uniform in time and decay exponentially in the Hausdorff distance in the configuration space. The results are derived through the analysis of fractional moments of the nn-particle Green function, and related bounds on the eigenfunction correlators

    A Nonperturbative Eliasson's Reducibility Theorem

    Full text link
    This paper is concerned with discrete, one-dimensional Schr\"odinger operators with real analytic potentials and one Diophantine frequency. Using localization and duality we show that almost every point in the spectrum admits a quasi-periodic Bloch wave if the potential is smaller than a certain constant which does not depend on the precise Diophantine conditions. The associated first-order system, a quasi-periodic skew-product, is shown to be reducible for almost all values of the energy. This is a partial nonperturbative generalization of a reducibility theorem by Eliasson. We also extend nonperturbatively the genericity of Cantor spectrum for these Schr\"odinger operators. Finally we prove that in our setting, Cantor spectrum implies the existence of a GδG_\delta-set of energies whose Schr\"odinger cocycle is not reducible to constant coefficients

    Two interacting Hofstadter butterflies

    Full text link
    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on non commutative geometry techniques permits to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure

    Disorder-assisted error correction in Majorana chains

    Full text link
    It was recently realized that quenched disorder may enhance the reliability of topological qubits by reducing the mobility of anyons at zero temperature. Here we compute storage times with and without disorder for quantum chains with unpaired Majorana fermions - the simplest toy model of a quantum memory. Disorder takes the form of a random site-dependent chemical potential. The corresponding one-particle problem is a one-dimensional Anderson model with disorder in the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction step. Assuming dynamical localization of the one-particle problem, we show that the storage time grows exponentially with the system size. We give supporting evidence for the required localization property by estimating Lyapunov exponents of the one-particle eigenfunctions. We also simulate the storage process for chains with a few hundred sites. Our numerical results indicate that in the absence of disorder, the storage time grows only as a logarithm of the system size. We provide numerical evidence for the beneficial effect of disorder on storage times and show that suitably chosen pseudorandom potentials can outperform random ones.Comment: 50 pages, 7 figure

    Anderson localisation in stationary ensembles of quasiperiodic operators

    No full text
    An ensemble of quasi-periodic discrete Schro ̈dinger operators with an arbitrary number of basic frequencies is considered, in a lattice of arbitrary dimension, in which the hull function is a realisation of a stationary Gaussian process on the torus. We show that, for almost every element of the ensemble, the quasi-periodic operator boasts Anderson localization with simple pure point spectrum at strong coupling. One of the ingredients of the proof is a new lower bound on the interpolation error for stationary Gaussian processes on the torus (also known as local non-determinism)
    corecore