1,418 research outputs found

    Electronic structure of YbB6_{6}: Is it a Topological Insulator or not?

    Full text link
    To resolve the controversial issue of the topological nature of the electronic structure of YbB6_{6}, we have made a combined study using density functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES). Accurate determination of the low energy band topology in DFT requires the use of modified Becke-Johnson exchange potential incorporating the spin-orbit coupling and the on-site Coulomb interaction UU of Yb 4f4f electrons as large as 7 eV. We have double-checked the DFT result with the more precise GW band calculation. ARPES is done with the non-polar (110) surface termination to avoid band bending and quantum well confinement that have confused ARPES spectra taken on the polar (001) surface termination. Thereby we show definitively that YbB6_{6} has a topologically trivial B 2pp-Yb 5dd semiconductor band gap, and hence is a non-Kondo non-topological insulator (TI). In agreement with theory, ARPES shows pure divalency for Yb and a pp-dd band gap of 0.3 eV, which clearly rules out both of the previous scenarios of ff-dd band inversion Kondo TI and pp-dd band inversion non-Kondo TI. We have also examined the pressure-dependent electronic structure of YbB6_{6}, and found that the high pressure phase is not a Kondo TI but a \emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary information contains 6 figures. 11 pages, 10 figures in total To be appeared in Phys. Rev. Lett. (Online publication is around March 16 if no delays.

    Irreversible proliferation of magnetic moments at cleaved surfaces of the topological Kondo insulator SmB6

    Full text link
    The compound SmB6_6 is the best established realization of a topological Kondo insulator, in which a topological insulator state is obtained through Kondo coherence. Recent studies have found evidence that the surface of SmB6_6 hosts ferromagnetic domains, creating an intrinsic platform for unidirectional ballistic transport at the domain boundaries. Here, surface-sensitive X-ray absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS) spectra are measured at the Sm N4,5_{4,5}-edge, and used to evaluate electronic symmetries, excitations and temperature dependence near the surface of cleaved samples. The XAS data show that the density of large-moment atomic multiplet states on a cleaved surface grows irreversibly over time, to a degree that likely exceeds a related change that has recently been observed in the surface 4f orbital occupation

    Measuring Infrared SurfaceBrightness Fluctuation Distances with HST WFC3: Calibration and Advice

    Get PDF
    We present new calibrations of the near-infrared (near-IR) surface brightness fluctuation (SBF) distance method for the F110W ( ) and F160W ( ) bandpasses of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope. The calibrations are based on data for 16 early-type galaxies in the Virgo and Fornax clusters observed with WFC3/IR and are provided as functions of both the optical and near-infrared colors. The scatter about the linear calibration relations for the luminous red galaxies in the sample is approximately 0.10 mag, corresponding to a statistical error of 5% in distance. Our results imply that the distance to any suitably bright elliptical galaxy can be measured with this precision out to about 80 Mpc in a single-orbit observation with WFC3/IR, making this a remarkably powerful instrument for extragalactic distances. The calibration sample also includes much bluer and lower-luminosity galaxies than previously used for IR SBF studies, revealing interesting population differences that cause the calibration scatter to increase for dwarf galaxies. Comparisons with single-burst population models show that as expected, the redder early-type galaxies contain old, metal-rich populations, while the bluer dwarf ellipticals contain a wider range of ages and lower metallicities than their more massive counterparts. Radial SBF gradients reveal that IR color gradients are largely an age effect; the bluer dwarfs typically have their youngest populations near their centers, while the redder giant ellipticals show only weak trends and in the opposite sense. Because of the population variations among bluer galaxies, distance measurements in the near-IR are best limited to red early-type galaxies. We conclude with some practical guidelines for using WFC3/IR to measure reliable SBF distances

    A Transcriptome Approach Toward Understanding Fruit Softening in Persimmon

    Get PDF
    Persimmon (Diospyros kaki Thunb.), which is a climacteric fruit, softens in 3–5 weeks after harvest. However, little is known regarding the transcriptional changes that underlie persimmon ripening. In this study, high-throughput de novo RNA sequencing was performed to examine differential expression between freshly harvested (FH) and softened (ST) persimmon fruit peels. Using the Illumina HiSeq platform, we obtained 259,483,704 high quality reads and 94,856 transcripts. After the removal of redundant sequences, a total of 31,258 unigenes were predicted, 1,790 of which were differentially expressed between FH and ST persimmon (1,284 up-regulated and 506 down-regulated in ST compared with FH). The differentially expressed genes (DEGs) were further subjected to KEGG pathway analysis. Several pathways were found to be up-regulated in ST persimmon, including “amino sugar and nucleotide sugar metabolism.” Pathways down-regulated in ST persimmon included “photosynthesis” and “carbon fixation in photosynthetic organisms.” Expression patterns of genes in these pathways were further confirmed using quantitative real-time RT-PCR. Ethylene gas production during persimmon softening was monitored with gas chromatography and found to be correlated with the fruit softening. Transcription involved in ethylene biosynthesis, perception and signaling was up-regulated. On the whole, this study investigated the key genes involved in metabolic pathways of persimmon fruit softening, especially implicated in increased sugar metabolism, decreased photosynthetic capability, and increased ethylene production and other ethylene-related functions. This transcriptome analysis provides baseline information on the identity and modulation of genes involved in softening of persimmon fruits and can underpin the future development of technologies to delay softening in persimmon

    Mesoscopic Kondo Effect in an Aharonov-Bohm Ring

    Full text link
    An interacting quantum dot inserted in a mesoscopic ring is investigated. A variational ansatz is employed to describe the ground state of the system in the presence of the Aharonov-Bohm flux. It is shown that, for even number of electrons with the energy level spacing smaller than the Kondo temperature, the persistent current has a value similar to that of a perfect ring with the same radius. On the other hand, for a ring with odd number electrons, the persistent current is found to be strongly suppressed compared to that of an ideal ring, which implies the suppression of the Kondo-resonant transmission. Various aspects of the Kondo-assisted persistent current are discussed.Comment: 4 pages Revtex, 4 Postscript figures, final version to appear in Phys. Rev. Lett. 85, No.26 (Dec. 25, 2000
    • …
    corecore