3 research outputs found

    THERMAL BUCKLING AND BENDING ANALYSES OF CARBON FOAM BEAMS SANDWICHED BY COMPOSITE FACES UNDER AXIAL COMPRESSION

    Get PDF
    The bending and critical buckling loads of a sandwich beam structure subjected to thermal load and axial compression were simulated and temperature distribution across sandwich layers was investigated by finite element analysis and validated analytically. The sandwich structure was consisted of two face sheets and a core, carbon fiber and carbon foam were used as face sheet and core respectively for more efficient stiffness results. The analysis was repeated with different materials to reduce thermal strain and heat flux of sandwich beams. Applying both ends fixed as temperature boundary conditions, temperature induced stresses were observed, steady-state thermal analysis was performed, and conduction through sandwich layers along with their deformation nature were investigated based on the material properties of the combination of face sheets and core. The best material combination was found for the reduction of heat flux and thermal strain, and addition of aerogel material significantly reduced thermal stresses without adding weight to the sandwich structure

    FREE VIBRATION INVESTIGATION ON RVE OF PROPOSED HONEYCOMB SANDWICH BEAM AND MATERIAL SELECTION OPTIMIZATION

    Get PDF
    In this paper, free vibration, modal and stress state analyses of honeycomb sandwich structures with different boundary conditions was investigated and major factors affecting the sandwich frequencies and stiffness due to material or parameter changes were determined. The representative volume element (RVE) method used in this work were analytically and numerically validated by comparing the obtained results to those available in literature. Firstly, unit cell method was used to capture the entire effects of different parameters on the free vibration of honeycomb sandwich structure in ANSYS. This study analyzed the natural frequencies of honeycomb sandwich structures with different core materials combination. The effects of foil thickness, boundary conditions, materials selection, density and presence of crack on sandwich structure were taken into consideration and examined. The proposed core had an inbuilt shaped reinforcement with different materials for effective resonance, fatigue and deformation resistance at much higher frequency
    corecore