28 research outputs found
Electronic band structure of three-dimensional topological insulators with different stoichiometry composition
We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, AIVBi4Te7âxSex (AIV= Sn, Pb;x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.The authors acknowledge financial support from the Saint Petersburg State University (Grant No. 40990069), the Tomsk State University competitiveness improvement program (Grant No. 8.1.01.2018), the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9), and the project EUROFEL-ROADMAP ESFRI. This work was also partly supported by the Italian Ministry of Education, Universities and Research (MIUR) through project PON03PE_00092_1 (EOMAT) and by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EIF/MQM/Elm-Tehsil-1-2016-
1(26)-71/01/4-M-33). S.V.E. acknowledges support from the
Russian Science Foundation (Grant No. 18-12-00169) for part
of the electronic band structure calculations.Peer reviewe
Mechanical Properties and Chemical Resistance of New Composites for Oil Pump Impellers
In this paper, a new class of high-performance composites and a method of their production based on the carbonization of an elastomeric matrix are proposed. The use of elastomeric matrix makes it possible to manufacture products with complex shapes, while the subsequent carbonization can significantly improve their properties by changing the chemical nature of the elastomeric matrix. Such an approach can reduce the products’ machining cost, especially for composites reinforced with super hard fillers such as silicon carbide at high filling degrees. Low-temperature carbonization makes it possible to obtain composites with mechanical behavior similar to that of ceramics. In contrast to classical elastomeric materials, the nitrile butadiene rubber (NBR)-based compounds were highly filled (300 parts per hundred rubber-PHR) with different carbon fillers and silicon carbide; then cured and carbonized at low-temperature 360 °C with the carbonization cycle of 12 h. The feasibility of the production method was validated through the manufacturing of products with complex shapes—impellers for electric centrifugal pumps. It was found that the carbonized composites have good chemical resistance and low water absorption. The composites have high Shore D hardnesses (93–96), ultimate tensile strengths (62–85 MPa), Young’s moduli (17–24 GPa), and compressive strengths (155–181 MPa)
APPLICATION OF COMPUTER MICROTOMOGRAPHY IN THE STUDY OF MORPHOSTRUCTURAL PECULIARITIES OF HARD TISSUES OF TEETH IN EARLY FORMS OF CARIOUS LESIONS
Aim. The research was designed to assess the capabilities of the microcomputer tomography method with the subsequent image analysis and determination of the mineral optical density of demineralized areas to improve the early diagnosis of fissure caries of permanent molars after the eruption.Materials and methods. Using a high-resolution X-ray microtomograph âSkyscan 1176â (âBrukerâ, Belgium) followed by post-processing and analysis of the obtained tomograms, 75 molars of children aged 8-11 were removed by orthodontic indications. Of the total number of teeth removed, research groups were formed â teeth without signs of demineralization and teeth with carious lesions in the stage of white, light brown, brown and black spots. In the reconstructed 2D and 3D images were identified the zones in the outer (0.05-0.5 mm), middle (0.75-1.25 mm) and inner (1.5-2.0 mm) thirds of the thickness of the enamel layer followed by the computation in the CTvox program (3.3.0-1403, Bruker-micro CT) of the averaged X-ray (mineral) density indicators. Results. According to the tomograms of the teeth of the studied groups, the average indicators of the mineral optical density of the intact teeth enamel were identified as well as the average indicators of teeth with various types of carious lesions within the enamel. The following sequence was revealed in descending order of the parameters of optical density: healthy enamel (2.47±0.12 g/cm3) â caries in the white spot stage (2.41±0.11 g/cm3) â caries in the light brown spot stage (2.32±0.07 g/cm3) â caries in the brown spot stage (2.18±0.12 g/cm3) â caries in the black spot stage (1.81±0.12 g/cm3). Identifying the correlations between the color of carious lesion and mineral density of tooth enamel broadens the understanding of the mechanisms of the development of caries pathogenesis and contributes to the improvement of therapeutic and preventive measures aimed at improving caries resistance.Conclusion. The use of microcomputer tomography in combination with other special methods characterizes fissure caries as a sequential, gradually progressing destructive process of hard tooth tissues (from focal demineralization to cavity formation), which establishes the relationship between the intensity of internal disturbances and external damage
Effect of Glass Fibers Thermal Treatment on the Mechanical and Thermal Behavior of Polysulfone Based Composites
The effect of thermal treatment of glass fibers (GF) on the mechanical and thermo-mechanical properties of polysulfone (PSU) based composites reinforced with GF was investigated. Flexural and shear tests were used to study the composites’ mechanical properties. A dynamic mechanical analysis (DMA) and a heat deflection temperature (HDT) test were used to study the thermo-mechanical properties of composites. The chemical structure of the composites was studied using IR-spectroscopy, and scanning electron microscopy (SEM) was used to illustrate the microstructure of the fracture surface. Three fiber to polymer ratios of initial and preheated GF composites (50/50, 60/40, 70/30 (wt.%)) were studied. The results showed that the mechanical and thermo-mechanical properties improved with an increase in the fiber to polymer ratio. The interfacial adhesion in the preheated composites enhanced as a result of removing the sizing coating during the thermal treatment of GF, which improved the properties of the preheated composites compared with the composites reinforced with initial untreated fibers. The SEM images showed a good distribution of the polymer on the GF surface in the preheated GF composites
Bulk Oriented UHMWPE/FMWCNT Films for Tribological Applications
Bulk oriented films based on ultrahigh molecular weight polyethylene (UHMWPE) with a drawing ratio of 35 were prepared by using a low solvent concentration. Bulk oriented films were filled with fluorinated multi-walled carbon nanotubes (FMWCNTs). The structure of bulk oriented films on UHMWPE, which were manufactured at different stages of orientation, was investigated by scanning electron microscope (SEM) and differential scanning calorimetry (DSC). The addition of FMWCNTs at a concentration of 0.05 wt % in bulk oriented UHMWPE films led to an increase in the tensile strength by 10% (up to 1020 ± 23 MPa) compared to unfilled oriented films. However, the addition of FMWCNTs at a concentration of more than 0.5 wt % led to a decrease in tensile strength due to excessive accumulation of nanotubes and hindering of self-diffusion of UHMWPE macromolecules. The multiple increase in tensile strength, doubling the hardness, the formation of fibrillar structure, and the presence of carbon nanotubes led to a significant increase in tribological properties in bulk oriented films. Bulk oriented UHMWPE/1% FMWCNT films can be operated at a maximum contact pressure that is 18 times higher and exhibit a specific wear rate more than an order of magnitude and less than the traditional UHMWPE of isotropic structure. Bulk oriented UHMWPE/1% FMWCNT films have an extremely low dry coefficient of friction (COF) of 0.075 at a contact pressure of 31 MPa. The developed bulk oriented films can be used for manufacturing frictional surfaces for sliding bearings, or for acetabular cups for knee and hip endoprostheses
Low-Temperature Carbonized Elastomer-Based Composites Filled with Silicon Carbide
Thermally stable composites obtained by the low-temperature carbonization of an elastomeric matrix filled with hard dispersed silicon carbide particles were obtained and investigated. Evolution of the microstructure and of mechanical and thermal characteristics of composites during thermal degradation and carbonization processes in a wide range of filling from 0 to 450 parts per hundred rubber was studied. For highly filled composites, the compressive strength values were found to be more than 200 MPa; Young’s modulus was more than 15 GPa. The thermal conductivity coefficient of composites was up to 1.6 W/(m·K), and this magnitude varied slightly in the temperature range of 25–300 °C. Coupled with the high thermal stability of the composites, the observed properties make it possible to consider using such composites as strained friction units instead of reinforced polymers
On the structural peculiarities of self-reinforced composite materials based on UHMWPE fibers
The structure of self-reinforced composites (SRCs) based on ultra-high molecular weight polyethylene (UHMWPE) was studied by means of Wide-Angle X-ray Scattering (WAXS), X-ray tomography, Raman spectroscopy, Scanning Electron Microscopy (SEM) and in situ tensile testing in combination with advanced processing tools to determine the correlation between the processing conditions, on one hand, and the molecular structure and mechanical properties, on the other. SRCs were fabricated by hot compaction of UHMWPE fibers at different pressure and temperature combinations without addition of polymer matrix or softener. It was found by WAXS that higher compaction temperatures led to more extensive melting of fibers with the corresponding reduction of the Herman's factor reflecting the degree of molecular orientation, while the increase of hot compaction pressure suppressed the melting of fibers within SRCs at a given temperature. X-ray tomography proved the absence of porosity while polarized light Raman spectroscopy measurements for both longitudinal and perpendicular fiber orientations showed qualitatively the anisotropy of SRC samples. SEM revealed that the matrix was formed by interlayers of molten polymer entrapped between fibers in SRCs. Moreover, in situ tensile tests demonstrated the increase of Young's modulus and tensile strength with increasing temperature
Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers
This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (K1c) were examined. The K1c parameter was obtained using three-point bending tests for specimens with different l/b ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the K1c parameter was drastically reduced from about 5 to 1 MPa·m1/2 and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the K1c values