1,383 research outputs found
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
Phase separation and vortex states in binary mixture of Bose-Einstein condensates in the trapping potentials with displaced centers
The system of two simultaneously trapped codensates consisting of
atoms in two different hyperfine states is investigated theoretically in the
case when the minima of the trapping potentials are displaced with respect to
each other. It is shown that the small shift of the minima of the trapping
potentials leads to the considerable displacement of the centers of mass of the
condensates, in agreement with the experiment. It is also shown that the
critical angular velocities of the vortex states of the system drastically
depend on the shift and the relative number of particles in the condensates,
and there is a possibility to exchange the vortex states between condensates by
shifting the centers of the trapping potentials.Comment: 4 pages, 2 figure
Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors
We consider the effect of the Rashba spin-orbital interaction and space
charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction
where the spin current is severely affected by the doping, band structure and
charge screening in the semiconductor. In diffusion region, if the the
resistance of the tunneling barriers is comparable to the semiconductor
resistance, the magnetoresistance of this junction can be greatly enhanced
under appropriate doping by the co-ordination between the Rashba effect and
screened Coulomb interaction in the nonequilibrium transport processes within
Hartree approximation.Comment: 4 pages, 3 figure
Binary Bose-Einstein Condensate Mixtures in Weakly and Strongly Segregated Phases
We perform a mean-field study of the binary Bose-Einstein condensate mixtures
as a function of the mutual repulsive interaction strength. In the phase
segregated regime, we find that there are two distinct phases: the weakly
segregated phase characterized by a `penetration depth' and the strongly
segregated phase characterized by a healing length. In the weakly segregated
phase the symmetry of the shape of each condensate will not take that of the
trap because of the finite surface tension, but its total density profile still
does. In the strongly segregated phase even the total density profile takes a
different symmetry from that of the trap because of the mutual exclusion of the
condensates. The lower critical condensate-atom number to observe the complete
phase segregation is discussed. A comparison to recent experimental data
suggests that the weakly segregated phase has been observed.Comment: minor change
Magnetic Field Induced Insulating Phases at Large
Exploring a backgated low density two-dimensional hole sample in the large
regime we found a surprisingly rich phase diagram. At the highest
densities, beside the , 2/3, and 2/5 fractional quantum Hall states,
we observe both of the previously reported high field insulating and reentrant
insulating phases. As the density is lowered, the reentrant insulating phase
initially strengthens, then it unexpectedly starts weakening until it
completely dissapears. At the lowest densities the terminal quantum Hall state
moves from to . The intricate behavior of the insulating
phases can be explained by a non-monotonic melting line in the -
phase space
Glassy Roughness of a Crystalline Surface Upon a Disordered Substrate
The discrete Gaussian model for the surface of a crystal deposited on a
disordered substrate is studied by Monte Carlo simulations. A continuous
transition is found from a phase with a thermally-induced roughness to a glassy
one in which the roughness is driven by the disorder. The behavior of the
height-height correlations is consistent with the one-step replica symmetry
broken solution of the variational approximation. The results differ from the
renormalization group predictions and from recent simulations of a 2D
vortex-glass model which belongs to the same universality class.Comment: 12 pages (RevTeX) & 3 figures (PS) uuencode
Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample
We measure the statistical polarization of quadrupolar nuclear spins in a
sub-micrometer (0.6 um^3) particle of GaAs using magnetic resonance force
microscopy. The crystalline sample is cut out of a GaAs wafer and attached to a
micro-mechanical cantilever force sensor using a focused ion beam technique.
Nuclear magnetic resonance is demonstrated on ensembles containing less than 5
x 10^8 nuclear spins and occupying a volume of around (300 nm)^3 in GaAs with
reduced volumes possible in future experiments. We discuss how the further
reduction of this detection volume will bring the spin ensemble into a regime
where random spin fluctuations, rather than Boltzmann polarization, dominate
its dynamics. The detection of statistical polarization in GaAs therefore
represents an important first step toward 3D magnetic resonance imaging of
III-V materials on the nanometer-scale.Comment: 20 pages, 6 figures, 1 supplementary fil
Wigner crystallization and metal-insulator transition of two-dimensional holes in GaAs/AlGaAs at B=0
We report the transport properties of a low disorder two-dimensional hole
system (2DHS) in the GaAs/AlGaAs heterostructure, which has an unprecedentedly
high peak mobility of , with hole density of in the temperature range of
. From their T, p, and electric field dependences, we find that
the metal-insulator transition in zero magnetic field in this exceptionally
clean 2DHS occurs at , which is in good agreement with the
critical for Wigner crystallization , predicted by
Tanatar and Ceperley for an ideally clean 2D system.Comment: 4 pages, 4 Postscript figure
Heat Capacity of ^3He in Aerogel
The heat capacity of pure ^3He in low density aerogel is measured at 22.5
bar. The superfluid response is simultaneously monitored with a torsional
oscillator. A slightly rounded heat capacity peak, 65 mu K in width, is
observed at the ^3He-aerogel superfluid transition, T_{ca}. Subtracting the
bulk ^3He contribution, the heat capacity shows a Fermi-liquid form above
T_{ca}. The heat capacity attributed to superfluid within the aerogel can be
fit with a rounded BCS form, and accounts for 0.30 of the non-bulk fluid in the
aerogel, indicating a substantial reduction in the superfluid order parameter
consistent with earlier superfluid density measurements.Comment: 4 pages, 5 figure
Melting of the classical bilayer Wigner crystal: influence of the lattice symmetry
The melting transition of the five different lattices of a bilayer crystal is
studied using the Monte-Carlo technique. We found the surprising result that
the square lattice has a substantial larger melting temperature as compared to
the other lattice structures, which is a consequence of the specific topology
of the temperature induced defects. A new melting criterion is formulated which
we show to be universal for bilayers as well as for single layer crystals.Comment: 4 pages, 5 figures (postscript files). Accepted in Physical Review
Letter
- …