49 research outputs found

    Analytical solution of axi-symmetrical lattice Boltzmann model for cylindrical Couette flows

    Get PDF
    Analytical solution for the axi-symmetrical lattice Boltzmann model is obtained for the low-Mach number cylindrical Couette flows. In the hydrodynamic limit, the present solution is in excellent agreement with the result of the Navier-Stokes equation. Since the kinetic boundary condition is used, the present analytical solution using nine discrete velocities can describe flows with the Knudsen number up to 0.1. Meanwhile, the comparison with the simulation data obtained by the direct simulation Monte Carlo method shows that higher-order lattice Boltzmann models with more discrete velocities are needed for highly rarefied flows

    Characterization of porcine dentin sialoprotein (DSP) and dentin sialophosphoprotein (DSPP) cDNA clones

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74726/1/j.1600-0722.2003.00009.x.pd

    Preliminary Optimization of Multi-Stage Axial-Flow Industrial Process Compressors Using Aero-Engine Compressor Design Strategy

    No full text
    Aero-engine core compressor preliminary design strategy has been successfully applied to the advanced design of gas turbines compressors. However, few researchers have addressed the application of the aero-engine core compressor preliminary design strategy in the preliminary optimal design of industrial process compressors. Here we embedded the aero-engine core compressor preliminary design strategy into a preliminary optimal design method, in which six types of design parameters widely used to define the aero-engine compressor configuration, i.e., aspect ratio, solidity, reaction, rotation speed, outlet axial Mach number, and inlet radius ratio, were used as the design variables. The 4-stage, 5-stage, 6-stage, and 7-stage compressor configuration with the same overall design requirements for a large-scale air separation main compressor were preliminarily optimized by the developed method, in which the 4-stage design has a stage pressure rise level of current aero-engine core compressors, whereas the 7-stage design has that of current industrial process compressors. The optimized compressor configurations were then refined with the throughflow-based detailed design method and finally verified with computational fluid dynamic simulations. It is found that the developed method can optimize design efficiency and accurately predict aerodynamic performance of compressors in a few minutes. Several design guidelines for the advanced industrial process compressors were also identified. This work is of significance in extending aero-engine core compressor design strategy to the design of advanced industrial process compressors

    Artificial intelligence metamodel comparison and application to wind turbine airfoil uncertainty analysis

    No full text
    The Monte Carlo simulation method for turbomachinery uncertainty analysis often requires performing a huge number of simulations, the computational cost of which can be greatly alleviated with the help of metamodeling techniques. An intensive comparative study was performed on the approximation performance of three prospective artificial intelligence metamodels, that is, artificial neural network, radial basis function, and support vector regression. The genetic algorithm was used to optimize the predetermined parameters of each metamodel for the sake of a fair comparison. Through testing on 10 nonlinear functions with different problem scales and sample sizes, the genetic algorithm–support vector regression metamodel was found more accurate and robust than the other two counterparts. Accordingly, the genetic algorithm–support vector regression metamodel was selected and combined with the Monte Carlo simulation method for the uncertainty analysis of a wind turbine airfoil under two types of surface roughness uncertainties. The results show that the genetic algorithm–support vector regression metamodel can capture well the uncertainty propagation from the surface roughness to the airfoil aerodynamic performance. This work is useful to the application of metamodeling techniques in the robust design optimization of turbomachinery

    Research on cylindrical indexing cam’s unilateral machining

    No full text
    The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported
    corecore