20 research outputs found

    An Infrared Coronagraphic Survey for Substellar Companions

    Full text link
    We have used the F160W filter (1.4-1.8 um) and the coronagraph on the Near-InfraRed Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST) to survey 45 single stars with a median age of 0.15 Gyr, an average distance of 30 pc, and an average H-magnitude of 7 mag. For the median age we were capable of detecting a 30 M_Jup companion at separations between 15 and 200 AU. A 5 M_Jup object could have been detected at 30 AU around 36% of our primaries. For several of our targets that were less than 30 Myr old, the lower mass limit was as low as a Jupiter mass, well into the high mass planet region. Results of the entire survey include the proper motion verification of five low-mass stellar companions, two brown dwarfs (HR7329B and TWA5B) and one possible brown dwarf binary (Gl 577B/C).Comment: 11 figures, accepted by A

    X-Ray Spectroscopy of II Pegasi: Coronal Temperature Structure, Abundances, and Variability

    Get PDF
    We have obtained high resolution X-ray spectra of the coronally active binary, II Pegasi (HD 224085), covering the wavelength range of 1.5-25 Angstroms. For the first half of our 44 ksec observation, the source was in a quiescent state with constant X-ray flux, after which it flared, reaching twice the quiescent flux in 12 ksec, then decreasing. We analyze the emission-line spectrum and continuum during quiescent and flaring states. The differential emission measure derived from lines fluxes shows a hot corona with a continuous distribution in temperature. During the non-flare state, the distribution peaks near log T = 7.2, and when flaring, near 7.6. High-temperature lines are enhanced slightly during the flare, but most of the change occurs in the continuum. Coronal abundance anomalies are apparent, with iron very deficient relative to oxygen and significantly weaker than expected from photospheric measurements, while neon is enhanced relative to oxygen. We find no evidence of appreciable resonant scattering optical depth in line ratios of iron and oxygen. The flare light curve is consistent with Solar two-ribbon flare models, but with a very long reconnection time-constant of about 65 ks. We infer loop lengths of about 0.05 stellar radii, to about 0.25 in the flare, if the flare emission originated from a single, low-density loop.Comment: 25 pages, 5 figures, 3 tables, accepted by ApJ (scheduled for the v559 n2 p1 Oct 1, 2001 issue
    corecore