36 research outputs found

    Apaf-1 overexpression partially overcomes apoptotic resistance in a cisplatin-selected HeLa cell line

    Get PDF
    AbstractInhibition of caspase-3-mediated apoptosis has been hypothesized to be associated with chemoresistance. Investigations of apoptosis revealed that cytosolic cytochrome c is associated with a complex of apoptotic protease activating factor-1 (Apaf-1), an adapter molecule, and caspase-9 to activate caspase-3. However, whether these apoptotic molecules are involved in acquired cisplatin resistance is not understood. The present work shows reduced activation of caspase-3 and apoptosis in a cisplatin-selected HeLa cell line. Ac-DEVD-CHO, a caspase-3 inhibitor, inhibited cisplatin-induced apoptosis about 60–70% in both cell lines. Ac-LEHD-CHO, a caspase-9 inhibitor or Ac-IETD-CHO, a caspase-8 inhibitor, inhibited cisplatin-induced caspase-3 activation and apoptosis similarly in both cell lines. In addition, cisplatin induced the activation of caspase-9, the upstream activator of caspase-3, in a dose-dependent manner, and the activation of caspase-9 was less induced in resistant cells. The accumulation of cytosolic cytochrome c, an activator of caspase-9, and the induction of the mitochondrial membrane-associated voltage-dependent anion channel were also reduced in cisplatin-resistant cells. However, the concentration of Bcl-2 family proteins in cisplatin-resistant cells was normal. The concentration of Apaf-1 was unaltered in both cell lines. Increasing the cellular concentration of Apaf-1 through the transient expression of the gene increased the induction of apoptosis in resistant cells, associated with enhanced activation of caspase-9, caspase-3 and DNA fragmentation factor. Regression analysis reveals that the modification factor, the ratio of the slope in the linear range of the dose–response curve with Apaf-1 to the slope without Apaf-1, is 1.5 and 4.75 in the HeLa and cisplatin-resistant HeLa cells, respectively. These results indicate that apoptosis and caspases are less induced in cisplatin-selected HeLa cells. They also suggest that ectopic overexpression of Apaf-1 may partially reverse the acquired cisplatin resistance

    Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging

    Get PDF
    Background: Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings: Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance: These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance

    UV-Induced Apoptosis in Resistant HeLa Cells

    No full text

    Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    No full text
    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug

    Ca 2+

    No full text
    corecore