15 research outputs found

    Analiza kuta smicanja pri ortogonalnom rezanju borovine

    Get PDF
    The determination of energy effects for wood machining processes, such as cutting power and cutting forces, is very useful in designing of manufacture process of wooden products. A more accurate prediction of cutting forces requires a correct determination of the shear angle value, which can be determined using various models. In this article, shear angle values for an orthogonal linear cutting process of pine wood are determined. The pine wood analysed was represented by two groups of samples with different moisture content levels, 12 % and 20 %. Three different models were used to determine the shear angle values: the Merchant model, which is based on the rake angle and the angle of friction, model based on chip compression ratios and Atkins model based on material properties (elements of fracture mechanics). The values obtained have been analysed for comparison. Results showed that the values of the shearing angles determined from the chip compression ratios turned out to be higher than the values from Merchant equation. The shear angles determined from the Atkins model are, as expected, lower than those determined from the Merchant model. Furthermore, the shear angle values for moisture content of 20 % are higher than for moisture content of 12 %.Određivanje energijskih veličina tijekom procesa obrade drva, poput snage rezanja i sile rezanja, vrlo je korisno pri projektiranju procesa proizvodnje drvenih predmeta. Za točnije predviđanje sila rezanja potrebno je ispravno odrediti vrijednost kuta smicanja, što se može postići primjenom različitih modela. U ovom su članku određene vrijednosti kutova smicanja za ortogonalno linearno rezanje borovine. Analizirano borovo drvo predstavljeno je dvjema skupinama uzoraka različitog udjela sadržaja vode, 12 i 20 %. Za određivanje vrijednosti kuta smicanja primijenjena su tri različita modela: Merchantov model utemeljen na prsnom kutu i kutu trenja; model zasnovan na omjerima kompresije strugotine i Atkinsov model, kojemu su glavna polazišta svojstva materijala (elementi mehanike loma). U radu je prezentirana usporedba dobivenih vrijednosti. Na temelju rezultata uočeno je da su vrijednosti kutova smicanja određene iz omjera kompresije strugotine veće od vrijednosti dobivenih Merchantovom jednadžbom. Kutovi smicanja određeni prema Atkinsovu modelu očekivano su niži od onih određenih uz pomoć Merchantova modela. Nadalje, vrijednosti kuta smicanja za uzorke sa sadržajem vode od 20 % veće su od kutova smicanja za uzorke sa sadržajem vode od 12 %

    Online mjerenje glatkoće površine drva

    Get PDF
    The latest progress in the field of optics and microelectronics resulted in the development of new generation vision systems capable of scanning surface topography with very high sampling frequencies. The blue color of illuminating light as well as novel systems for controlling ultra-thin laser line thickness allows the measurement of the porous surface of wood with a triangulation method. Three alternative sensors were tested here in order to verify their suitability for the determination of surface topography in the industrial environment. The scanning head was installed at the exit zone of the four-side profiling moulder and was set to scrutinize the wood surface shape line-by-line, immediately after profiling. The sensor was also tested for automatic detection of surface defects appearing on the elements after sanding, wetting and painting with various finishing products. The set of pilot test results is presented, together with an original algorithm for real-time surface defects detection.Najnoviji napredak u području optike i mikroelektronike rezultirao je novom generacijom skenera koji mogu skenirati topografiju površine vrlo visokom frekvencijom uzorkovanja. Svjetlost plave boje, kao i novi sustav za kontrolu vrlo tanke laserske zrake omogućuju mjerenje porozne površine drva metodom triangulacije. Testirana su tri alternativna senzora kako bi se potvrdila njihova prikladnost za određivanje topografije površine u industrijskim uvjetima. Glava za skeniranje postavljena je na izlazu četverostranoga profilnoga glodala kako bi se odmah nakon profiliranja pomno linijski skenirala površina drva. Senzor je također testiran za automatsko otkrivanje površinskih grešaka na elementima nakon brušenja, vlaženja i premazivanja različitim premaznim materijalima. Predstavljen je set rezultata pilot-ispitivanja, zajedno s originalnim algoritmom za otkrivanje površinskih grešaka u realnom vremenu

    Surface roughness evaluation in thin EN AW-6086-T6 alloy plates after face milling process with different strategies

    Get PDF
    Lightweight alloys made from aluminium are used to manufacture cars, trains and planes. The main parts most often manufactured from thin sheets requiring the use of milling in the manufacturing process are front panels for control systems, housing parts for electrical and electronic components. As a result of the final phase of the manufacturing process, cold rolling, residual stresses remain in the surface layers, which can influence the cutting processes carried out on these materials. The main aim of this study was to verify whether the strategy of removing the outer material layers of aluminium alloy sheets affects the surface roughness after the face milling process. EN AW-6082-T6 aluminium alloy thin plates with three different thicknesses and with two directions relative to the cold rolling process direction (longitudinal and transverse) were analysed. Three different strategies for removing the outer layers of the material by face milling were considered. Noticeable differences in surface roughness 2D and 3D parameters were found among all machining strategies and for both rolling directions, but these differences were not statistically significant. The lowest values of Ra = 0.34 µm were measured for the S#3 strategy, which asymmetrically removed material from both sides of the plate (main and back), for an 8-mm-thick plate in the transverse rolling direction. The highest values of Ra = 0.48 µm were measured for a 6-mm-thick plate milled with the S#2 strategy, which symmetrically removed material from both sides of the plate, in the longitudinal rolling direction. However, the position of the face cutter axis during the machining process was observed to have a significant effect on the surface roughness. A higher surface roughness was measured in the areas of the tool point transition from the up-milling direction to the down-milling direction (tool axis path) for all analysed strategies (Ra = 0.63–0.68 µm). The best values were obtained for the up-milling direction, but in the area of the smooth execution of the process (Ra = 0.26–0.29 µm), not in the area of the blade entry into the material. A similar relationship was obtained for analysed medians of the arithmetic mean height (Sa) and the root-mean-square height (Sq). However, in the case of the S#3 strategy, the spreads of results were the lowest

    Capacity of Surface Production of Band Sawing in Manufacture of Oak Floor Upper Layers

    Get PDF
    Thin lamellae, corresponding to the layer components of structural glued members, i.e., 2-ply or 3-ply glued flooring, can be manufactured in re-sawing operations of kiln-dried wood blocks or in wet technologies, which currently seem to be more common because of the shorter drying time. The re-sawing process in wet technology is conducted on dedicated thin-cutting band sawing machines with stellite-tipped band saws. The goal of this research was to demonstrate the capacity of surface production (m2/ tool life) of visible layers of oak engineered flooring composites in a function of both a new band saw and a re-sharpened band saw blade. Additionally, the state of teeth of each band saw blade was examined at the end of the tool life. A series of cutting tests were performed in sawmill production conditions. The conducted tests revealed that a three times higher capacity of surface production was obtained for the new tool compared to re-sharpened tool. Additional microscopic observations of some re-sharpened teeth showed deformed plastic characteristics

    Recovering Evaluation of Narrow-Kerf Teeth of Mini Sash Gang Saws

    No full text
    Sash gang saws with narrow-kerf saw blades are used in the production of glued laminate flooring elements in plants where dry technology is applied. This means that boards or friezes are sawn into top layer lamellae in dry conditions (moisture content of about 10–12%) from expensive wood species, often exotic. The object of this research was stellite-tipped teeth of narrow kerf saw blades sharpened under industrial conditions. A NIKON ECLIPSE Ti-S microscope equipped with a NIKON DS-Fi2 recording camera was used to take pictures of teeth, which were analysed in a graphical software to measure the radii of the main cutting edges. The high-quality images obtained were used to determine the values of the rounding radii of the cutting edges. It was noted that the quality of edges regenerated in industrial conditions, some of which had chipping, was lower than that of brand new saw blades

    The Effect of Openings’ Size and Location on Selected Dynamical Properties of Typical Wood Frame Walls

    No full text
    The wooden frame constructions are now popular in many developed countries of the world. Many of these locations where such buildings are constructed are exposed to seismic and other shocks which are generated by human activities. This paper discusses the effect of the size and location of openings in the wooden frame walls under dynamic loadings. Natural frequencies of such frames with and without openings have been determined. Three 14 m high walls with different widths, including 3, 6, and 12 m, have been considered. Dynamic analysis has been made using finite element method structural analysis software Dlubal RFEM 5.17. The results show that the effect of the size and location of the openings on the natural frequency is significant. Numerically speaking, the relative change of the natural frequencies of a wall without and with an opening in a specific place could be up to 30%. In addition, the change of the natural frequency for the location of the openings is more sensitive than that to the sizes. Furthermore, the appropriate sizes and locations of openings of the wooden frame walls have been suggested. The appropriate size and place were found to be small openings in the top of the walls

    Capacity of Surface Production of Band Sawing in Manufacture of Oak Floor Upper Layers

    Get PDF
    Thin lamellae, corresponding to the layer components of structural glued members, i.e., 2-ply or 3-ply glued flooring, can be manufactured in re-sawing operations of kiln-dried wood blocks or in wet technologies, which currently seem to be more common because of the shorter drying time. The re-sawing process in wet technology is conducted on dedicated thin-cutting band sawing machines with stellite-tipped band saws. The goal of this research was to demonstrate the capacity of surface production (m2/ tool life) of visible layers of oak engineered flooring composites in a function of both a new band saw and a re-sharpened band saw blade. Additionally, the state of teeth of each band saw blade was examined at the end of the tool life. A series of cutting tests were performed in sawmill production conditions. The conducted tests revealed that a three times higher capacity of surface production was obtained for the new tool compared to re-sharpened tool. Additional microscopic observations of some re-sharpened teeth showed deformed plastic characteristics

    Analysis of the relationship between cutting forces and local structural properties of Scots pine wood aided by computed tomography

    No full text
    X-ray computed tomography (CT) is utilised in some sawmills today, primarily for enhancing value yield and for process automation, which includes log sorting and sawing optimisation. Nevertheless, there is a scarcity of recent research utilising CT to assess the local cutting process. As a preliminary study, this paper addresses this gap by using CT to investigate the connections between local cutting force and local wood properties including density, knots, and annual ring width. Workpieces of Scots pine (Pinus sylvestris L.), from Sweden and Poland, were CT-scanned in laboratory conditions. Quasi-linear cutting tests were then performed on both clear and knotty regions of the workpieces using a custom-made laboratory stand with a Stellite-tipped tooth mounted on piezoelectric sensors. It was found that density influences cutting forces for both clear and knotty wood, and this effect increased noticeably with increasing uncut chip thickness. Changes in wood density, such as between sapwood and heartwood or between clear wood and knot, caused dynamic changes in cutting forces and temporary disturbances to the stability of the system. Normalisation of cutting forces by local density allowed the conclusion that density is not the only property affecting cutting forces. Other structural properties, e.g. annual ring width and latewood–earlywood proportion may affect the cutting process as well, which requires deeper analysis in the future research. This preliminary study demonstrates the feasibility and usefulness of coupling CT data with cutting force measurements and suggests further research on the relationship between cutting force and wood properties. Full text: CC BY license;Funder: Gdańsk University of Technology (DEC-1/2022/IDUB/II.2/Np);</p

    One More Step towards a Circular Economy for Thermal Insulation Materials—Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry

    No full text
    The rapid development of the building sector has created increased demand for novel materials and technologies, while on the other hand resulting in the generation of a severe amount of waste materials. Among these are polyurethane (PU) foams, which are commonly applied as thermal insulation materials. Their management is a serious industrial problem, due to, for example, their complex chemical composition. Although some chemical and thermochemical methods of PU foam recycling are known, their broader use is limited due to requirements related to the complexity and safety of their installation, thus implicating high costs. Therefore, material recycling poses a promising alternative. The incorporation of waste PU foams as fillers for polymer composites could make it possible to take advantage of their structure and performance. Herein, polypropylene-based composites that were highly filled with waste PU foam and modified using foaming agents were prepared and analyzed. Depending on the foam loading and the foaming agent applied, the apparent density of material was reduced by as much as 68%. The efficient development of a porous structure, confirmed by scanning electron microscopy and high-resolution computed micro-tomography, enabled a 64% decrease in the thermal conductivity coefficient. The foaming of the structure affected the mechanical performance of composites, resulting in a deterioration of their tensile and compressive performance. Therefore, developing samples of the analyzed composites with the desired performance would require identifying the proper balance between mechanical strength and economic, as well as ecological (share of waste material in composite, apparent density of material), considerations
    corecore