17 research outputs found
Association between central venous pressure measurement and outcomes in critically ill patients with severe coma
Abstract Background The use of central venous pressure (CVP) measurements among (intensive care unit) ICU patients with severe coma has been questioned. This study aimed to investigate the application value of CVP in this population. Methods Data stored in the ICU Collaborative Research Database (eICU-CRD) and Medical Information Mart for Intensive Care III (MIMIC-III) database were reviewed. Critically ill patients with a Glasgow Coma Scale (GCS) score of 3–8 were included. The primary outcome was the in-hospital mortality rate. The statistical approaches used included multivariable Cox regression, propensity score matching (PSM), inverse probability treatment weighting (IPTW), stabilized IPTW, and restricted cubic splines (RCS) to ensure the robustness of our findings. Results In total, 7386 patients were included in the study. Early CVP measurement was independently associated with in-hospital mortality [hazard ratio, 0.63; p < 0.001] in patients with severe-to-moderate coma. This result was robust in the PSM, sIPTW, and IPTW cohorts. For all patients with CVP measurements, the RCS curves showed that the risk of in-hospital mortality increased as the initial CVP time was delayed. In addition, early CVP measurement was significantly associated with lower ICU mortality, 28-day mortality, and 365-day mortality and a significantly higher number of ventilator-free days. Conclusion Early CVP measurement could improve clinical outcomes in critically ill patients with severe com
Neuroprotective Effect of Protein Phosphatase 2A/Tristetraprolin Following Subarachnoid Hemorrhage in Rats
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) can lead to inflammation and neuronal dysfunction. There is a need for effective strategies to mitigate these effects and improve the outcome of patients who experience SAH. The mRNA-destabilizing protein tristetraprolin (TTP) is an anti-inflammatory factor that induces the decay of cytokine transcripts and has been implicated in diseases such as glioma. However, the mechanism of action of TTP in EBI after SAH is unclear. The present study investigated the effects of TTP regulation via phosphorylation in a rat model of SAH by protein phosphatase (PP)2A, which is a pleiotropic enzyme complex with multiple substrate phospho-proteins. We hypothesized that inhibitory phosphorylation of TTP by PP2A would reduce neuroinflammation and apoptosis. To evaluate the function of each factor, the PP2A agonist FTY720, short interfering (si)RNAs targeting TTP and PP2A were administered to rats by intracerebroventricular injection 24 h before SAH. Rats were evaluated with SAH grade, neurological score, brain water content and by western blotting, and terminal deoxynucleotidyltransferase dUTP nick-end labeling. We found that endogenous PP2A and TTP levels were increased after SAH. FTY720 induced PP2A activation would lead to dephosphorylation and activation of TTP and decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. SiRNA-mediated TTP knockdown abolished anti-inflammatory effects of FTY720 treatment, indicating that PP2A was associated with TTP activation in vivo. Decreased TNF-α, IL-6, and IL-8 levels were associated with improvement of neurological function, reduction of brain edema, suppression of caspase-3, and up-regulation of B cell lymphoma-2. These results demonstrated that PP2A activation could enhance the anti-inflammatory and anti-apoptotic effects of TTP, by which it might shed light on the development of an effective therapeutic strategy against EBI following SAH
Screening of key functional components of Taohong Siwu Decoction on ischemic stroke treatment based on multiobjective optimization approach and experimental validation
Abstract Background Taohong Siwu Decoction (THSWD) is a widely used traditional Chinese medicine (TCM) prescription in the treatment of ischemic stroke. There are thousands of chemical components in THSWD. However, the key functional components are still poorly understood. This study aimed to construct a mathematical model for screening of active ingredients in TCM prescriptions and apply it to THSWD on ischemic stroke. Methods Botanical drugs and compounds in THSWD were acquired from multiple public TCM databases. All compounds were initially screened by ADMET properties. SEA, HitPick, and Swiss Target Prediction were used for target prediction of the filtered compounds. Ischemic stroke pathological genes were acquired from the DisGeNet database. The compound–target–pathogenic gene (C-T-P) network of THSWD was constructed and then optimized using the multiobjective optimization (MOO) algorithm. We calculated the cumulative target coverage score of each compound and screened the top compounds with 90% coverage. Finally, verification of the neuroprotective effect of these compounds was performed with the oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results The optimized C-T-P network contains 167 compounds, 1,467 predicted targets, and 1,758 stroke pathological genes. And the MOO model showed better optimization performance than the degree model, closeness model, and betweenness model. Then, we calculated the cumulative target coverage score of the above compounds, and the cumulative effect of 39 compounds on pathogenic genes reached 90% of all compounds. Furthermore, the experimental results showed that decanoic acid, butylphthalide, chrysophanol, and sinapic acid significantly increased cell viability. Finally, the docking results showed the binding modes of these four compounds and their target proteins. Conclusion This study provides a methodological reference for the screening of potential therapeutic compounds of TCM. In addition, decanoic acid and sinapic acid screened from THSWD were found having potential neuroprotective effects first and verified with cell experiments, however, further in vitro and in vivo studies are needed to explore the precise mechanisms involved
CDKN2BAS gene polymorphisms and the risk of intracranial aneurysm in the Chinese population
Abstract Background CDKN2BAS gene polymorphisms has been shown to correlation with intracranial aneurysm(IA) in the study of foreign people. The study, the author selected the Chinese people as the research object to explore whether CDKN2BAS gene polymorphisms associated with Chinese patients with IA. Methods We selected 200 patients(52.69 ± 11.50) with sporadic IA as experimental group, 200 participants(49.99 ± 13.00) over the same period to the hospital without cerebrovascular diseases as control group. Extraction of peripheral blood DNA, applying polymerase chain reaction(PCR)-ligase detection reaction (LDR) identified CDKN2BAS Single nucleotide polymorphism(SNP) locus genotype: rs6475606, rs1333040, rs10757272, rs3217992, rs974336, rs3217986, rs1063192. The differences in allelic and genotype frequencies between the patient and control groups were evaluated by the chi-square test or Fisher’s exact tests. Results The genotype of rs1333040 and rs6475606 shown association with sporadic IA(X2 = 8.545, P = 0.014; X2 = 10.961, P = 0.004; respectively);the C allele of rs6475606 showed reduction the occurrence of IA; the rs1333040 and rs6475606 associated with hemorrhage, the C allele of rs1333040 could lower the risk of hemorrhage, and rs6475606 will not, rs1333040 also associated with aneurysm size. Conclusion Our research shows that variant rs1333040 and rs6475606 of CDKN2BAS related to the Chinese han population of sporadic IAs occurs. This study confirms the association between CDKN2BAS and IAs
CypD induced ROS output promotes intracranial aneurysm formation and rupture by 8-OHdG/NLRP3/MMP9 pathway
Reactive Oxygen Species (ROS) are widely accepted as a pernicious factor in the progression of intracranial aneurysm (IA), which is eminently related to cell apoptosis and extracellular matrix degradation, but the mechanism remains to be elucidated. Recent evidence has identified that enhancement of Cyclophilin D (CypD) under stress conditions plays a critical role in ROS output, thus accelerating vascular destruction. However, no study has confirmed whether cypD is a detrimental mediator of cell apoptosis and extracellular matrix degradation in the setting of IA development. Our data indicated that endogenous cypD mRNA was significantly upregulated in human IA lesions and mouse IA wall, accompanied by higher level of ROS, MMPs and cell apoptosis. CypD−/− remarkably reversed vascular smooth muscle cells (VSMCs) apoptosis and elastic fiber degradation, and significantly decreased the incidence of aneurysm and ruptured aneurysm, together with the downregulation of ROS, 8-OHdG, NLRP3 and MMP9 in vivo and vitro. Furthermore, we demonstrated that blockade of cypD with CsA inhibited the above processes, thus preventing IA formation and rupture, these effects were highly dependent on ROS output. Mechanistically, we found that cypD directly interacts with ATP5B to promote ROS release in VSMCs, and 8-OHdG directly bind to NLRP3, which interacted with MMP9 to increased MMP9 level and activity in vivo and vitro. Our data expound an unexpected role of cypD in IA pathogenesis and an undescribed 8-OHdG/NLRP3/MMP9 pathway involved in accelerating VSMCs apoptosis and elastic fiber degradation. Repressing ROS output by CypD inhibition may be a promising therapeutic strategy for prevention IA development
TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway
Abstract Background An acute and drastic inflammatory response characterized by the production of inflammatory mediators is followed by stroke, including SAH. Overactivation of microglia parallels an excessive inflammatory response and worsened brain damage. Previous studies indicate that TSG-6 has potent immunomodulatory and anti-inflammatory properties. This study aimed to evaluate the effects of TSG-6 in modulating immune reaction and microglial phenotype shift after experimental SAH. Methods The SAH model was established by endovascular puncture method for Sprague–Dawley rats (weighing 280–320 g). Recombinant human protein and specific siRNAs for TSG-6 were exploited in vivo. Brain injury was assessed by neurologic scores, brain water content, and Fluoro-Jade C (FJC) staining. Microglia phenotypic status was evaluated and determined by Western immunoblotting, quantitative real-time polymerase chain reaction (qPCR) analyses, flow cytometry, and immunofluorescence labeling. Results SAH induced significant inflammation, and M1-dominated microglia polarization increased expression of TSG-6 and neurological dysfunction in rats. rh-TSG-6 significantly ameliorated brain injury, decreased proinflammatory mediators, and skewed microglia towards a more anti-inflammatory property 24-h after SAH. While knockdown of TSG-6 further induced detrimental effects of microglia accompanied with more neurological deficits, the anti-inflammation effects of rh-TSG-6 were associated with microglia phenotypic shift by regulating the level of SOCS3/STAT3 axis. Conclusions TSG-6 exerted neuroprotection against SAH-induced EBI in rats, mediated in part by skewing the balance of microglial response towards a protective phenotype, thereby preventing excessive tissue damage and improving functional outcomes. Our findings revealed the role of TSG-6 in modulating microglial response partially involved in the SOCS3/STAT3 pathway and TSG-6 may be a promising therapeutic target for the treatment of brain injury following SAH
Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch
Abstract Background Activated microglia-mediated neuroinflammation has been regarded as an underlying key player in the pathogenesis of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). The therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) transplantation has been demonstrated in several brain injury models and is thought to involve modulation of the inflammatory response. The present study investigated the salutary effects of BMSCs on EBI after SAH and the potential mechanism mediated by Notch1 signaling pathway inhibition. Methods The Sprague-Dawley rats SAH model was induced by endovascular perforation method. BMSCs (3 × 106 cells) were transplanted intravenously into rats, and N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a Notch1 activation inhibitor, and Notch1 small interfering RNA (siRNA) were injected intracerebroventricularly. The effects of BMSCs on EBI were assayed by neurological score, brain water content (BWC), blood-brain barrier (BBB) permeability, magnetic resonance imaging, hematoxylin and eosin staining, and Fluoro-Jade C staining. Immunofluorescence and immunohistochemistry staining, Western blotting, and quantitative real-time polymerase chain reaction were used to analyze various proteins and transcript levels. Pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Results BMSCs treatment mitigated the neurobehavioral dysfunction, BWC and BBB disruption associated with EBI after SAH, reduced ionized calcium binding adapter molecule 1 and cluster of differentiation 68 staining and interleukin (IL)-1 beta, IL-6 and tumor necrosis factor alpha expression in the left hemisphere but concurrently increased IL-10 expression. DAPT or Notch1 siRNA administration reduced Notch1 signaling pathway activation following SAH, ameliorated neurobehavioral impairments, and BBB disruption; increased BWC and neuronal degeneration; and inhibited activation of microglia and production of pro-inflammatory factors. The augmentation of Notch1 signal pathway agents and phosphorylation of nuclear factor-κB after SAH were suppressed by BMSCs but the levels of Botch were upregulated in the ipsilateral hemisphere. Botch knockdown in BMSCs abrogated the protective effects of BMSCs treatment on EBI and the suppressive effects of BMSCs on Notch1 expression. Conclusions BMSCs treatment alleviated neurobehavioral impairments and the inflammatory response in EBI after SAH; these effects may be attributed to Botch upregulation in brain tissue, which subsequently inhibited the Notch1 signaling pathway
Quantitative analysis of the lysine acetylome reveals the role of SIRT3-mediated HSP60 deacetylation in suppressing intracellular Mycobacterium tuberculosis survival
ABSTRACT Protein acetylation and deacetylation are key epigenetic modifications that regulate the initiation and development of several diseases. In the context of infection with Mycobacterium tuberculosis (M. tb), these processes are essential for host–pathogen interactions and immune responses. However, the specific effects of acetylation and deacetylation on cellular functions during M. tb infection are not fully understood. This study employed Tandem Mass Tag (TMT) labeling for quantitative proteomic profiling to examine the acetylproteome (acetylome) profiles of noninfected and M. tb-infected macrophages. We identified 715 acetylated peptides from 1,072 proteins and quantified 544 lysine acetylation sites (Kac) in 402 proteins in noninfected and M. tb-infected macrophages. Our research revealed a link between acetylation events and metabolic changes during M. tb infection. Notably, the deacetylation of heat shock protein 60 (HSP60), a key chaperone protein, was significantly associated with this process. Specifically, the deacetylation of HSP60 at K96 by sirtuin3 (SIRT3) enhances macrophage apoptosis, leading to the elimination of intracellular M. tb. These findings underscore the pivotal role of the SIRT3–HSP60 axis in the host immune response to M. tb. This study offers a new perspective on host protein acetylation and suggests that targeting host-directed therapies could be a promising approach for tuberculosis immunotherapy.IMPORTANCEProtein acetylation is crucial for the onset, development, and outcome of tuberculosis (TB). Our study comprehensively investigated the dynamics of lysine acetylation during M. tb infection, shedding light on the intricate host–pathogen interactions that underlie the pathogenesis of tuberculosis. Using an advanced quantitative lysine proteomics approach, different profiles of acetylation sites and proteins in macrophages infected with M. tb were identified. Functional enrichment and protein–protein network analyses revealed significant associations between acetylated proteins and key cellular pathways, highlighting their critical role in the host response to M. tb infection. Furthermore, the deacetylation of HSP60 and its influence on macrophage-mediated clearance of M. tb underscore the functional significance of acetylation in tuberculosis pathogenesis. In conclusion, this study provides valuable insights into the regulatory mechanisms governing host immune responses to M. tb infection and offers promising avenues for developing novel therapeutic interventions against TB
China Intracranial Aneurysm Project (CIAP): protocol for a registry study on a multidimensional prediction model for rupture risk of unruptured intracranial aneurysms
Abstract Background Ruptured aneurysms, the commonest cause of nontraumatic subarachnoid hemorrhage, can be catastrophic; the mortality and morbidity of affected patients being very high. Some risk factors, such as smoking, hypertension and female sex have been identified, whereas others, such as hemodynamics, imaging, and genomics, remain unclear. Currently, no accurate model that includes all factors for predicting such rupture is available. We plan to use data from a large cohort of Chinese individuals to set up a multidimensional model for predicting risk of rupture of unruptured intracranial aneurysms (UIAs). Methods The China Intracranial Aneurysm Project-2 (CIAP-2) will comprise screening of a cohort of 500 patients with UIA (From CIAP-1) and focus on hemodynamic factors, high resolution magnetic resonance imaging (HRMRI) findings, genetic factors, and biomarkers. Possible risk factors for rupture of UIA, including genetic factors, biomarkers, HRMRI, and hemodynamic factors, will be analyzed. The first project of the China Intracranial Aneurysm Project (CIAP-1; chaired by the Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China) will prospectively collect a cohort of 5000 patients with UIA from 20 centers in China, and collect baseline information for each patient. Multidimensional data will be acquired in follow-up assessments. Statistically significant clinical features in the UIA cohort will also be analyzed and integrated into the model for predicting risk of UIA rupture. After the model has been set up, the resultant evidence-based prediction will provide a preliminary theoretical basis for treating aneurysms at high risk of rupture. Discussion This study will explore the risk of rupture of aneurysms and develop a scientific multidimensional model for predicting rupture of unruptured intracranial aneurysms. Clinical Trials registration A Study on a Multidimensional Prediction Model for Rupture Risk of Unruptured Intracranial Aneurysms (CIAP-2), NCT03133624. Registered: 16 April 2017. https://clinicaltrials.gov/ct2/show/NCT0313362