4 research outputs found

    New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    Get PDF
    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC–SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC–PLA particles prepared by classical method were used as comparison. The formulated MMC–SPC–PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA–MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA–MMC–SPC nanoparticles, and 74.1% for PLA–MMC particles. The IR analysis of MMC–SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method

    Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution

    Get PDF
    Tianjin Key Laboratory of Biomedical Materials; Xiamen Science and Technology project [3502Z20114007]; Fujian Provincial Health Department [2009-2-79]Both folic acid (FA)- and methoxypoly(ethylene glycol) (mPEG)- conjugated chitosan nanoparticles (NPs) had been designed for targeted and prolong anticancer drug delivery system. The chitosan NPs were prepared with combination of ionic gelation and chemical cross-linking method, followed by conjugation with both FA and mPEG, respectively. FA-mPEG-NPs were compared with either NPs or mPEG-/FA-NPs in terms of their size, targeting cellular efficiency and tumor tissue distribution. The specificity of the mPEG-FA-NPs targeting cancerous cells was demonstrated by comparative intracellular uptake of NPs and mPEG-/FA-NPs by human adenocarcinoma HeLa cells. Mitomycin C (MMC), as a model drug, was loaded to the mPEG-FA-NPs. Results show that the chitosan NPs presented a narrow-size distribution with an average diameter about 200 nm regardless of the type of functional group. In addition, MMC was easily loaded to the mPEG-FA-NPs with drug-loading content of 9.1%, and the drug releases were biphasic with an initial burst release, followed by a subsequent slower release. Laser confocal scanning imaging proved that both mPEG-FA-NPs and FA-NPs could greatly enhance uptake by HeLa cells. In vivo animal experiments, using a nude mice xenograft model, demonstrated that an increased amount of mPEG-FA-NPs or FA-NPs were accumulated in the tumor tissue relative to the mPEG-NPs or NPs alone. These results suggest that both FA-and mPEG-conjugated chitosan NPs are potentially prolonged drug delivery system for tumor cell-selective targeting treatments

    PLA Nanoparticles Loaded With an Active Lactone Form of Hydroxycamptothecin: Development, Optimization, and In Vitro-In Vivo Evaluation in Mice Bearing H22 Solid Tumor

    No full text
    National Key Technology RD Program [2007BAD07B05]; Xiamen Science and Technology Project [3502Z20093009]; Fujian Provincial Health Department [2009-2-79]Hydroxycamptothecin (HCPT)-loaded PLA nanoparticles were prepared by a one-step method using the direct dialysis technique, and were examined for particle characteristics, in vitro drug release, and cytotoxicity, as well as antitumor efficiency. Three main influential factors based on the results of a single-factor test, i.e., PLA concentration, ratio of HCPT to PLA (wt/wt), and dialysis bags with different molecule weight cutoffs, were evaluated using an orthogonal design, giving nanoparticles an average diameter of similar to 226.8nm with smooth surface, modest drug entrapment efficiency (65.15%), and fine drug-oading content (5.16%, w/w). HCPT was in a crystalline state within the particles. In vitro drug release studies exhibited a slow and prolonged release profile over a period of 30 days. The cytotoxicity test on BEL-7402 cells indicated that the HCPT-PLA nanoparticles were more cytotoxic than commercially available HCPT injection. When the antitumor effect was examined by i.v. administration to mice bearing H22 solid tumor, HCPT-PLA nanoparticles showed a significant suppression of tumor growth without loss of body weight. These results suggest that HCPT-PLA nanoparticles prepared by the dialysis technique present desirable characteristics for sustained drug delivery and are potentially useful to enhance the antitumor efficacy of HCPT. Drug Dev Res 72: 337-345, 2011. (C) 2011 Wiley-Liss, Inc

    Preparation and in vitro evaluation of an ultrasound-triggered drug delivery system: 10-Hydroxycamptothecin loaded PLA microbubbles

    No full text
    10-Hydroxycamptothecin (HCPT) loaded PLA microbubbles, used as an ultrasound-triggered drug delivery system, were fabricated by a double emulsion-solvent evaporation method. The obtained microbubbles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and confocal laser scanning microscope (CLSM). In addition, the effect of diagnostic ultrasound exposure on BEL-7402 cells combined with HCPT-loaded PLA microbubbles was evaluated using cytotoxicity assay, CLSM and flow cytometry (FCM). It was found that the HCPT-loaded PLA microbubbles showed smooth surface and spherical shape, and the drug was amorphously dispersed within the shell and the drug loading content reached up to 1.69%. Nearly 20% of HCPT was released upon exposure to diagnostic ultrasound at frequency of 3.5 MHz for 10 min. Moreover, HCPT fluorescence in the cells treated only with the HCPT-loaded PLA microbubbles was discernible, but less intense, while those treated with the microbubbles in conjunction with ultrasound exposure was evident and intense, indicating an increased cellular uptake of HCPT by ultrasound exposure. Cytotoxicity test on BEL-7402 cells indicated that the HCPT-loaded PLA microbubbles combined with ultrasound exposure were more cytotoxic than the microbubbles alone. The results suggest that the combination of drug loaded PLA microbubbles and diagnostic ultrasound exposure exhibit an effective intracellular drug uptake by tumor cells, indicating their great potential for antitumor therapy. (C) 2011 Published by Elsevier B.V.major research plan of the national nature science foundation of China [90923042]; Doctoral Fund of Ministry of Education of China [20101106110042]; Xiamen science and technology project [2010S0862]; Fujian provincial health department youth research projects [2011-2-66
    corecore