22 research outputs found

    Splitting of surface defect partition functions and integrable systems

    Full text link
    We study Bethe/gauge correspondence at the special locus of Coulomb moduli where the integrable system exhibits the splitting of degenerate levels. For this investigation, we consider the four-dimensional pure N=2\mathcal{N}=2 supersymmetric U(N)U(N) gauge theory, with a half-BPS surface defect constructed with the help of an orbifold or a degenerate gauge vertex. We show that the non-perturbative Dyson-Schwinger equations imply the Schr\"odinger-type and the Baxter-type differential equations satisfied by the respective surface defect partition functions. At the special locus of Coulomb moduli the surface defect partition function splits into parts. We recover the Bethe/gauge dictionary for each summand.Comment: 34 pages, 2 figures; v2. published versio

    Ecological micro-expression recognition characteristics of young adults with subthreshold depression.

    No full text
    The micro-expression (ME) processing characteristics of patients with depression has been studied but has not been investigated in people with subthreshold depression. Based on this, by adopting the ecological MEs recognition paradigm, this study aimed to explore ME recognition in people with subthreshold depression. A 4 (background expression: happy, neutral, sad and fearful) × 4 (ME: happy, neutral, sad, and fearful) study was designed; two groups of participants (experimental group with subthreshold depression vs. healthy control group, 32 participants in each group) were asked to complete the ecological ME recognition task, and the corresponding accuracy (ACC) and reaction time (RT) were analyzed. Results: (1) Under different background conditions, recognizing happy MEs had the highest ACC and shortest RT. (2) There was no significant difference in the ACC and RT between experimental and control groups. (3)In different contexts, individuals with subthreshold depression tended to misjudge neutral, sad, and fearful MEs as happy, while neutral MEs were misjudged as sad and fearful. (4) The performance of individuals with subthreshold depression in the ecological ME recognition task were influenced by the type of ME; they showed highest ACC and shortest RT when recognizing happy MEs (vs. the other MEs). Conclusions: (1) The performance of individuals' ecological ME recognition were influenced by the background expression, and this embodied the need for ecological ME recognition. (2) Individuals with subthreshold depression showed normal ecological ME recognition ability. (3) In terms of misjudgment, individuals with subthreshold depression showed both positive and negative bias, when completing the ecological ME recognition task. (4) Compared with the other MEs, happy MEs showed an advantage recognition effect for individuals with subthreshold depression who completed the ecological ME recognition task

    Human Alertness Optimization with a Three-Process Dynamic Model

    No full text
    Circadian rhythm is an important biological process for humans as it modulates a wide range of physiological processes, including body temperature, sleep-wake cycle, and cognitive performance. As the most powerful external stimulus of circadian rhythm, light has been studied as a zeitgeber to regulate the circadian phase and sleep. This paper addresses the human alertness optimization problem, by optimizing light exposure and sleep schedules to relieve fatigue and cognitive impairment, in cases of night-shift workers and subjects with certain mission periods based on dynamics of the circadian rhythm system. A three-process hybrid dynamic model is used for simulating the circadian rhythm and predicting subjective alertness and sleepiness. Based on interindividual difference in sleep type and living habits, we propose a tunable sleep schedule in the alertness optimization problem, which allows the appropriate tuning of sleep and wake times based on sleep propensity. Variational calculus is applied to evaluate the impacts of light and sleep schedules on the alertness and a gradient descent algorithm is proposed to determine the optimal solutions to maximize the alertness level in various cases. Numerical simulation results demonstrate that the cognitive performance during certain periods can be significantly improved by optimizing the light input and tuning sleep/wake times compared to empirical data

    ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data

    No full text
    Abstract Background Insecticide resistance is a substantial problem in controlling agricultural and medical pests. Detecting target site mutations is crucial to manage insecticide resistance. Though PCR-based methods have been widely used in this field, they are time-consuming and inefficient, and typically have a high false positive rate. Acetylcholinesterases (Ace) is the neural target of the widely used organophosphate (OP) and carbamate insecticides. However, there is not any software available to detect insecticide resistance associated mutations in RNA-Seq data at present. Results A computational pipeline ACE was developed to detect resistance mutations of ace in insect RNA-Seq data. Known ace resistance mutations were collected and used as a reference. We constructed a Web server for ACE, and the standalone software in both Linux and Windows versions is available for download. ACE was used to analyse 971 RNA-Seq data from 136 studies in 7 insect pests. The mutation frequency of each RNA-Seq dataset was calculated. The results indicated that the resistance frequency was 30%–44% in an eastern Ugandan Anopheles population, thus suggesting this resistance-conferring mutation has reached high frequency in these mosquitoes in Uganda. Analyses of RNA-Seq data from the diamondback moth Plutella xylostella indicated that the G227A mutation was positively related with resistance levels to organophosphate or carbamate insecticides. The wasp Nasonia vitripennis had a low frequency of resistant reads (<5%), but the agricultural pests Chilo suppressalis and Bemisia tabaci had a high resistance frequency. All ace reads in the 30 B. tabaci RNA-Seq data were resistant reads, suggesting that insecticide resistance has spread to very high frequency in B. tabaci. Conclusions To the best of our knowledge, the ACE pipeline is the first tool to detect resistance mutations from RNA-Seq data, and it facilitates the full utilization of large-scale genetic data obtained by using next-generation sequencing

    Additional file 14: Table S10. of Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens

    No full text
    Primers used for RT-PCR and strand-specific PCR. Both two pairs of primers were used for RT-PCR validation. One pair of primers was used for strand-specific PCR for determining transcript orientations. *: the primer used for strand specific PCRs. (DOCX 24 kb

    The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum

    No full text
    Abstract Background Parasitoid wasps are well-known natural enemies of major agricultural pests and arthropod borne diseases. The parasitoid wasp Macrocentrus cingulum (Hymenoptera: Braconidae) has been widely used to control the notorious insect pests Ostrinia furnacalis (Asian Corn Borer) and O. nubilalis (European corn borer). One striking phenomenon exhibited by M. cingulum is polyembryony, the formation of multiple genetically identical offspring from a single zygote. Moreover, M. cingulum employs a passive parasitic strategy by preventing the host’s immune system from recognizing the embryo as a foreign body. Thus, the embryos evade the host’s immune system and are not encapsulated by host hemocytes. Unfortunately, the mechanism of both polyembryony and immune evasion remains largely unknown. Results We report the genome of the parasitoid wasp M. cingulum. Comparative genomics analysis of M. cingulum and other 11 insects were conducted, finding some gene families with apparent expansion or contraction which might be linked to the parasitic behaviors or polyembryony of M. cingulum. Moreover, we present the evidence that the microRNA miR-14b regulates the polyembryonic development of M. cingulum by targeting the c-Myc Promoter-binding Protein 1 (MBP-1), histone-lysine N-methyltransferase 2E (KMT2E) and segmentation protein Runt. In addition, Hemomucin, an O-glycosylated transmembrane protein, protects the endoparasitoid wasp larvae from being encapsulated by host hemocytes. Motif and domain analysis showed that only the hemomucin in two endoparasitoids, M. cingulum and Venturia canescens, possessing the ability of passive immune evasion has intact mucin domain and similar O-glycosylation patterns, indicating that the hemomucin is a key factor modulating the immune evasion. Conclusions The microRNA miR-14b participates in the regulation of polyembryonic development, and the O-glycosylation of the mucin domain in the hemomucin confers the passive immune evasion in this wasp. These key findings provide new insights into the polyembryony and immune evasion
    corecore