14 research outputs found

    A Novel Robot Visual Homing Method Based on SIFT Features

    No full text
    Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method

    Storage and retrieval of light pulse in coupled quantum wells

    No full text
    In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, the results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated

    Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides

    No full text
    Nanotechnology-enabled fertilizers and pesticides, especially those capable of releasing plant nutrients or pesticide active ingredients (AIs) in a controlled manner, can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities. Herein, we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties, enabled by nanocarriers responsive to environmental and biological stimuli, including pH change, temperature, light, redox conditions, and the presence of enzymes. For pH-responsive nanocarriers, pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers. Similarly, temperature response typically involves structural changes in nanocarriers, and higher temperatures can accelerate the release by diffusion promoting or bond breaking. Photothermal materials enable responses to infrared light, and photolabile moieties (e.g., o-nitrobenzyl and azobenzene) are required for achieving ultraviolet light responses. Redox-responsive nanocarriers contain disulfide bonds or ferric iron, whereas enzyme-responsive nanocarriers typically contain the enzyme’s substrate as a building block. For fabricating nanofertilizers, pH-responsive nanocarriers have been well explored, but only a few studies have reported temperature- and enzyme-responsive nanocarriers. In comparison, there have been more reports on nanopesticides, which are responsive to a range of stimuli, including many with dual- or triple-responsiveness. Nano-enabled controlled-release fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs. However, to expand their practical applications, future research should focus on optimizing their performance under realistic conditions, lowering costs, and addressing regulatory and public concerns over environmental and safety risks

    Phonon blockade in a quadratically coupled optomechanical system with two-phonon driving

    No full text
    We propose a scheme to enhance phonon blockade effect in a quadratically coupled optomechanical system. By applying a degenerate parametric drive to the mechanical oscillator, we introduce a mechanical parametric amplifier (MPA) to the system. We show that the phonon blockade can be achieved in both the single-phonon resonant regime and multipath interference regime due to the optomechanical nonlinearity and MPA. By combining the two regimes together, we show that the phonon blockade effect is enhanced compared to the regime without MPA. What is more, the two-time second-order correlation function gradually tends to one without rapid oscillations in our scheme, which suggests that high time resolution is not necessary in the detection

    Source models for the 2016 Mw6.0 Hutubi earthquake, Xinjiang, China: A possible reverse event

    No full text
    South and north-dipping nodal planes from the U.S. Geological Survey moment tensor solution were used to invert global teleseismic body waves to reveal the source rupture process of the December 8, 2016, Mw6.0 Hutubi earthquake. The results show that a compact pattern is the main feature of this event for only one main slip zone located at the hypocenter for both models. The slip distributions are dominated by a nearly pure-thrust fault, and there is no apparent surface rupture. The inversion revealed that the slip zone extends 10 km along strike and 12 km along dip. The released total seismic moment was about 9.0 × 1017 Nm, corresponding to a magnitude of Mw6.0. It is difficult to solve for a best-fit rupture plane due to the sample slip pattern without obvious rupture directivity. This makes the far-field teleseismic data not sensitive enough to determine the fault geometric parameters. The source model of the reverse north-dipping plane fits well with the observed waveforms, and the results of the aftershock relocation outline a trend of north-dipping profiles, indicating the possibility of a reverse event. The inverted normal fault beneath the Qigu fold, interpreted by geological and seismic studies, may be the seismogenic fault for this reverse event

    Circumventing the Theoretical Scaling Relation Limit for the Oxygen Evolution Reaction

    No full text
    Transition metal hydr(oxy)oxides (TMHs) are considered efficient electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. Toward identification of potential descriptors to circumvent the scaling relation limit for the OER, first-principles calculations were used to quantify the effects on the overpotential of different s (Mg), p (Al), and d (Ti, V, Cr, Fe, Co, Sc, and Zn) electron dopants in Ni-based TMHs. Both the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM) were examined. The results demonstrate that the formation energy of oxygen vacancies (EVO) is strongly affected by the chemical nature of the dopants. A linear relationship is identified between EVO and the free energy difference for the oxygen–oxygen coupling. A descriptor could be employed to discriminate whether the LOM is energetically favored over the AEM. These findings fill existing gaps in appropriate yet computationally light descriptors for direct identification between the AEM and LOM

    Genome-Wide Analysis Elucidates the Role of CONSTANS-like Genes in Stress Responses of Cotton

    No full text
    The CONSTANS (CO)-like gene family has been well studied for its role in the regulation of plant flowering time. However, their role remains poorly understood in cotton. To better understand the possible roles of CO-like in cotton, we performed a comprehensive genome-wide analysis of CO-like genes in cotton. Phylogenetic tree analysis showed that CO-like genes naturally clustered into three groups. Segmental duplication and whole genome duplication (WGD), which occurred before polyploidy, were important contributors to its expansion within the At (“t” indicates tetraploid) and Dt subgenomes, particularly in Group III. Long-terminal repeat retroelements were identified as the main transposable elements accompanying 18 genes. The genotype of GhCOL12_Dt displayed low diversity; it was a candidate involved in domestication. Selection pressure analyses indicated that relaxed purifying selection might have provided the main impetus during the evolution of CO-like genes in upland cotton. In addition, the high expression in the torus and calycle indicated that CO-like genes might affect flowering. The genes from Group II, and those from Group III involved in segmental duplication or WGD, might play important roles in response to drought and salt stress. Overall, this comprehensive genome-wide study of the CO-like gene family would facilitate further detailed studies in cotton
    corecore