17,909 research outputs found
Effects of electrode surface roughness on motional heating of trapped ions
Electric field noise is a major source of motional heating in trapped ion
quantum computation. While the influence of trap electrode geometries on
electric field noise has been studied in patch potential and surface adsorbate
models, only smooth surfaces are accounted for by current theory. The effects
of roughness, a ubiquitous feature of surface electrodes, are poorly
understood. We investigate its impact on electric field noise by deriving a
rough-surface Green's function and evaluating its effects on adsorbate-surface
binding energies. At cryogenic temperatures, heating rate contributions from
adsorbates are predicted to exhibit an exponential sensitivity to local surface
curvature, leading to either a large net enhancement or suppression over smooth
surfaces. For typical experimental parameters, orders-of-magnitude variations
in total heating rates can occur depending on the spatial distribution of
absorbates. Through careful engineering of electrode surface profiles, our
results suggests that heating rates can be tuned over orders of magnitudes.Comment: 12 pages, 5 figure
Non-separated states from squeezed dark-state polaritons in electromagnetically-induced-transparency media
Within the frame of quantized dark-state polaritons in
electromagnetically-induced-transparency media, noise fluctuations in the
quadrature components are studied. Squeezed state transfer, quantum
correlation, and noise entanglement between probe field and atomic polarization
are demonstrated in single- and double- configurations, respectively.
Even though a larger degree of squeezing parameter in the continuous variable
helps to establish stronger quantum correlations, inseparability criterion is
satisfied only within a finite range of squeezing parameter. The results
obtained in the present study may be useful for guiding experimental
realization of quantum memory devices for possible applications in quantum
information and computation.Comment: 12 pages, 7 figure
Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway.
The Calvin-Benson-Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 sugar limits the maximum carbon yield of photosynthesis. Here we design a synthetic malyl-CoA-glycerate (MCG) pathway to augment the CBB cycle for efficient acetyl-CoA synthesis. This pathway converts a C3 metabolite to two acetyl-CoA by fixation of one additional CO2 equivalent, or assimilates glyoxylate, a photorespiration intermediate, to produce acetyl-CoA without net carbon loss. We first functionally demonstrate the design of the MCG pathway in vitro and in Escherichia coli. We then implement the pathway in a photosynthetic organism Synechococcus elongates PCC7942, and show that it increases the intracellular acetyl-CoA pool and enhances bicarbonate assimilation by roughly 2-fold. This work provides a strategy to improve carbon fixation efficiency in photosynthetic organisms
- …
