3,969 research outputs found

    Solving the Cold-Start Problem in Recommender Systems with Social Tags

    Full text link
    In this paper, based on the user-tag-object tripartite graphs, we propose a recommendation algorithm, which considers social tags as an important role for information retrieval. Besides its low cost of computational time, the experiment results of two real-world data sets, \emph{Del.icio.us} and \emph{MovieLens}, show it can enhance the algorithmic accuracy and diversity. Especially, it can obtain more personalized recommendation results when users have diverse topics of tags. In addition, the numerical results on the dependence of algorithmic accuracy indicates that the proposed algorithm is particularly effective for small degree objects, which reminds us of the well-known \emph{cold-start} problem in recommender systems. Further empirical study shows that the proposed algorithm can significantly solve this problem in social tagging systems with heterogeneous object degree distributions

    Ground-state configuration space heterogeneity of random finite-connectivity spin glasses and random constraint satisfaction problems

    Full text link
    We demonstrate through two case studies, one on the p-spin interaction model and the other on the random K-satisfiability problem, that a heterogeneity transition occurs to the ground-state configuration space of a random finite-connectivity spin glass system at certain critical value of the constraint density. At the transition point, exponentially many configuration communities emerge from the ground-state configuration space, making the entropy density s(q) of configuration-pairs a non-concave function of configuration-pair overlap q. Each configuration community is a collection of relatively similar configurations and it forms a stable thermodynamic phase in the presence of a suitable external field. We calculate s(q) by the replica-symmetric and the first-step replica-symmetry-broken cavity methods, and show by simulations that the configuration space heterogeneity leads to dynamical heterogeneity of particle diffusion processes because of the entropic trapping effect of configuration communities. This work clarifies the fine structure of the ground-state configuration space of random spin glass models, it also sheds light on the glassy behavior of hard-sphere colloidal systems at relatively high particle volume fraction.Comment: 26 pages, 9 figures, submitted to Journal of Statistical Mechanic

    Promoting cold-start items in recommender systems

    Full text link
    As one of major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, so-called the item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. To our surprise, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely these new items will have more chance to appear in other users' recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs.Comment: 6 pages, 6 figure
    • …
    corecore