10,644 research outputs found

    Social cohesion matters in health

    Full text link

    Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons

    Full text link
    The spontaneous generation of charge-density-wave order in a Dirac fermion system via the natural mechanism of electron-phonon coupling is studied in the framework of the Holstein model on the honeycomb lattice. Using two independent and unbiased quantum Monte Carlo methods, the phase diagram as a function of temperature and coupling strength is determined. It features a quantum critical point as well as a line of thermal critical points. Finite-size scaling appears consistent with fermionic Gross-Neveu-Ising universality for the quantum phase transition, and bosonic Ising universality for the thermal phase transition. The critical temperature has a maximum at intermediate couplings. Our findings motivate experimental efforts to identify or engineer Dirac systems with sufficiently strong and tunable electron-phonon coupling.Comment: 4+3 pages, 4+2 figure

    Multiplet resonance lifetimes in resonant inelastic X-ray scattering involving shallow core levels

    Full text link
    Resonant inelastic X-ray scattering (RIXS) spectra of model copper- and nickel-based transition metal oxides are measured over a wide range of energies near the M-edge (hν\nu=60-80eV) to better understand the properties of resonant scattering involving shallow core levels. Standard multiplet RIXS calculations are found to deviate significantly from the observed spectra. However, by incorporating the self consistently calculated decay lifetime for each intermediate resonance state within a given resonance edge, we obtain dramatically improved agreement between data and theory. Our results suggest that these textured lifetime corrections can enable a quantitative correspondence between first principles predictions and RIXS data on model multiplet systems. This accurate model is also used to analyze resonant elastic scattering, which displays the elastic Fano effect and provides a rough upper bound for the core hole shake-up response time.Comment: 6 pages, 3 figure

    Neural networks-based command filtering control for a table-mount experimental helicopter

    Get PDF
    This paper presents neural networks based on command filtering control method for a table-mount experimental helicopter which has three rotational degrees-of-freedom. First, the controller is designed based on backstepping technique, and further command filtering technique is used to solve the derivative of the virtual control, thereby avoiding the effects of signal noise. Secondly, the model uncertainty of the table-mount experimental helicopter's system is estimated by using neural networks. And then, Lyapunov stabilization analysis proves the stability of the table-mount experimental helicopter closedloop attitude tracking system. Finally, the experiment is carried out to clarify the effectiveness of the proposed method. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved

    Coherent Eavesdropping Attacks in Quantum Cryptography: Nonequivalence of Quantum and Classical Key Distillation

    Full text link
    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that -- for protocols that use quantum channels of any dimension and completely characterize them by state tomography -- the noise threshold for classical advantage distillation is substantially lower than the threshold for quantum entanglement distillation because the eavesdropper can perform powerful coherent attacks. The earlier claims that the two noise thresholds are identical, which were based on analyzing incoherent attacks only, are therefore invalid.Comment: 4 pages, 1 figure; this is the detailed account for the results Reported in quant-ph/031015
    corecore