47 research outputs found

    Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>apical membrane antigen-1 (AMA1) is a leading malaria vaccine candidate antigen that is expressed by sporozoite, liver and blood stage parasites. Since CD8+ T cell responses have been implicated in protection against pre-erythrocytic stage malaria, this study was designed to identify MHC class I-restricted epitopes within AMA1.</p> <p>Methods</p> <p>A recombinant adenovirus serotype 5 vector expressing <it>P. falciparum </it>AMA1 was highly immunogenic when administered to healthy, malaria-naive adult volunteers as determined by IFN-γ ELISpot responses to peptide pools containing overlapping 15-mer peptides spanning full-length AMA1. Computerized algorithms (NetMHC software) were used to predict minimal MHC-restricted 8-10-mer epitope sequences within AMA1 15-mer peptides active in ELISpot. A subset of epitopes was synthesized and tested for induction of CD8+ T cell IFN-γ responses by ELISpot depletion and ICS assays. A 3-dimensional model combining Domains I + II of <it>P. falciparum </it>AMA1 and Domain III of <it>P. vivax </it>AMA1 was used to map these epitopes.</p> <p>Results</p> <p>Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine of the 14 predicted epitopes were recognized in ELISpot or ELISpot and ICS assays by one or more volunteers. Depletion of T cell subsets confirmed that these epitopes were CD8+ T cell-dependent. A mixture of the 14 minimal epitopes was capable of recalling CD8+ T cell IFN-γ responses from PBMC of immunized volunteers. Thirteen of the 14 predicted epitopes were polymorphic and the majority localized to the more conserved front surface of the AMA1 model structure.</p> <p>Conclusions</p> <p>This study predicted 14 and confirmed nine MHC class I-restricted CD8+ T cell epitopes on AMA1 recognized in the context of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human populations.</p

    Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    Get PDF
    Background: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge.\ud \ud Methodology/Principal Findings: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1x1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected.\ud \ud Significance: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection

    Susceptibility of Plasmodium falciparum to artemisinins and Plasmodium vivax to chloroquine in Phuoc Chien Commune, Ninh Thuan Province, south-central Vietnam

    No full text
    Abstract Background Reduced artemisinin susceptibility and artemisinin-based combination therapy (ACT)-resistance against Plasmodium falciparum and chloroquine (CQ)-resistant P. vivax malaria has been reported in Vietnam. Two therapeutic efficacy studies were conducted in Thuan Bac District (Ninh Thuan Province, Vietnam) in 2015 and 2016 to determine the extent of reduced artemisinin susceptibility and ACT resistant falciparum malaria, and CQ-resistant vivax malaria were present. Methods Twenty-seven patients with falciparum malaria were randomized to receive artesunate alone (AS ~ 4 mg/kg/day) for 4 days followed by dihydroartemisinin (DHA) (2.2 mg/kg)–piperaquine (PPQ) (18 mg/kg) daily for 3 days or artemether (AM) (1.7 mg/kg)–lumefantrine (LUM) (12 mg/kg) twice daily for 3 days. Sixteen subjects with vivax malaria received CQ (total 25 mg/kg over 3 days). The therapeutic efficacy study for treating falciparum malaria was complemented with molecular analysis for artemisinin and piperaquine resistance, and in vitro drug susceptibility testing. Patient’s drug exposure following both falciparum and vivax treatment studies was determined. Results Twenty-five of 27 patients treated with the artemisinin regimens completed the 42-day follow-up period. None had parasites present on day 3 after commencing treatment with no incidence of recrudescence (100% curative rate). One patient on AS + DHA–PPQ was lost to follow-up and one patient had Plasmodium falciparum and Plasmodium vivax infection on day 0 by PCR. Of the vivax patients, 15 of 16 completed CQ treatment and two had a recurrence of vivax malaria on day 28, a failure rate of 13.3% (2/15). No mutations in the Pfkelch-13 gene for artemisinin resistance or exo-E415G gene polymorphism and amplification in plasmepsins 2 and 3 for piperaquine resistance were observed. In vitro testing of patient’s falciparum parasites indicated susceptibility (low IC50 nM values) to dihydroartemisinin, lumefantrine, piperaquine and pyronaridine. Patient’s drug exposure to artesunate and lumefantrine was comparable to published data, however, blood CQ concentrations were lower. Conclusions Clinical findings, molecular analysis and in vitro testing revealed that the falciparum parasites at Phuoc Chien Commune were artemisinin susceptible. The clinical failure rate of the 15 vivax patients who completed CQ treatment was 13%. Further studies are required to determine whether CQ-resistant vivax malaria is present at the commune

    ELISpot and CD8+ T cell IFN-γ responses of DNA/HuAd5 and HuAd5 immunized subjects to <i>P</i>. <i>falciparum</i> strains 3D7 and 7G8 AMA1 A*03 protective epitopes.

    No full text
    <p>ELISpot and CD8+ T cell IFN-γ activities are shown in Panels A–D. <b>Panel A:</b> ELISpot IFN-γ response of the A*03 protected subject (v11) are positive with Ap8 and the 3D7 A*03 epitope but not the 7G8 epitope (arrow). <b>Panel B:</b> ELISpot activity of v11 is not affected by CD4+-depletion but is abolished after CD8+ depletion (arrow). <b>Panel C:</b> CD8+ T cell IFN-γ responses of v11 are much higher (p = 0.001) to the 3D7 epitope than to the 7G8 epitope (arrow). <b>Panel D:</b> ELISpot IFN-γ responses of two of four non-protected subjects from the HuAd5 trial were weakly positive with the 3D7 epitope but all four subjects were negative with the 7G8 epitope (arrows).</p

    Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    No full text
    <div><p>Background</p><p>Fifteen volunteers were immunized with three doses of plasmid DNA encoding <i>P. falciparum</i> circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection.</p><p>Methodology/Principal Findings</p><p>We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to <i>P. falciparum</i> in humans.</p><p>Conclusions/Significance</p><p>We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines.</p></div
    corecore