323 research outputs found

    A Lorentz-invariant look at quantum clock synchronization protocols based on distributed entanglement

    Full text link
    Recent work has raised the possibility that quantum information theory techniques can be used to synchronize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization (QCS) requires distribution of entangled pure singlets to the synchronizing parties. Such remote entanglement distribution normally creates a relative phase error in the distributed singlet state which then needs to be purified asynchronously. We present a fully relativistic analysis of the QCS protocol which shows that asynchronous entanglement purification is not possible, and, therefore, that the proposed QCS scheme remains incomplete. We discuss possible directions of research in quantum information theory which may lead to a complete, working QCS protocol.Comment: 5 pages; typeset in RevTe

    PHP62 Establish Drugs Optimal Purchase Model

    Get PDF

    Efficiency-Based Recruitment Plan for Chained Quick-Service Enterprise.

    Get PDF
    [[abstract]]This paper describes a research method called two-stage design consisting of the determination of the efficiency for each quick-service restaurant of chained enterprise at the first stage by using Data Envelopment Analysis (DEA), and then proposes an approach of Recruitment and Allocation (RA) plan for supporting the everlasting running of the enterprise in the second stage. The technical efficiency, the scale efficiency, the production efficiency, and the return to scale are conducted in the first stage of this two-stage research design. In addition, this study also proposes the potentially improved value to promote the relative efficiency of each chained restaurant through the improvement of inputs or outputs items. Besides, the RA plan is proposed in the second stage of the two-stage design. The RA plan is an fficiency-based quantitative approach to recruit employees as well as to determine the allocation of those recruited employees. This study indeed provides a constructive and quantitative approach of solving the dilemma issue “how to reasonably recruit and allocate employees” for decision makers with profound insight in the quick-service enterprise.[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Robustness of Decoherence-Free Subspaces for Quantum Computation

    Full text link
    It was shown recently [D.A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)] that within the framework of the semigroup Markovian master equation, decoherence-free (DF) subspaces exist which are stable to first order in time to a perturbation. Here this result is extended to the non-Markovian regime and generalized. In particular, it is shown that within both the semigroup and the non-Markovian operator sum representation, DF subspaces are stable to all orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal for quantum memory applications. For quantum computation, however, the stability result does not extend beyond the first order. Thus, to perform robust quantum computation in DF subspaces, they must be supplemented with quantum error correcting codes.Comment: 16 pages, no figures. Several changes, including a clarification of the derivation of the Lindblad equation from the operator sum representation. To appear in Phys. Rev

    Maximizing the entanglement of two mixed qubits

    Get PDF
    Two-qubit states occupy a large and relatively unexplored Hilbert space. Such states can be succinctly characterized by their degree of entanglement and purity. In this letter we investigate entangled mixed states and present a class of states that have the maximum amount of entanglement for a given linear entropy.Comment: 4 pages, 3 figure

    Interaction-free generation of entanglement

    Full text link
    In this paper, we study how to generate entanglement by interaction-free measurement. Using Kwiat et al.'s interferometer, we construct a two-qubit quantum gate that changes a particle's trajectory according to the other particle's trajectory. We propose methods for generating the Bell state from an electron and a positron and from a pair of photons by this gate. We also show that using this gate, we can carry out the Bell measurement with the probability of 3/4 at the maximum and execute a controlled-NOT operation by the method proposed by Gottesman and Chuang with the probability of 9/16 at the maximum. We estimate the success probability for generating the Bell state by our procedure under imperfect interaction.Comment: 18 pages, Latex2e, 11 eps figures, v2: minor corrections and one reference added, v3: a minor correctio

    Reducing the communication complexity with quantum entanglement

    Full text link
    We propose a probabilistic two-party communication complexity scenario with a prior nonmaximally entangled state, which results in less communication than that is required with only classical random correlations. A simple all-optical implementation of this protocol is presented and demonstrates our conclusion.Comment: 4 Pages, 2 Figure

    Disentanglement and Inseparability correlation : in two-qubit system

    Full text link
    Started from local universal isotropic disentanglement, a threshold inequality on reduction factors is proposed, which is necessary and sufficient for this type of disentanglement processes. Furthermore, we give the conditions realizing ideal disentanglement processes provided that some information on quantum states is known. In addition, based on fully entangled fraction, a concept called inseparability correlation is presented. Some properties on inseparability correlation coefficient are studied.Comment: 10 Pages, 2 Figures, REVTeX; to appear in PR

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure

    Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot

    Full text link
    We perform quantum interference experiments on a single self-assembled semiconductor quantum dot. The presence or absence of a single exciton in the dot provides a qubit that we control with femtosecond time resolution. We combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa algorithm. The results show the feasibility of single qubit quantum logic in a semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the dephasing in the quantum dots. The introduction has been reworded for clarity. Minor readability fixe
    corecore