22 research outputs found

    Amphiphile-Mediated Ultrasmall Aggregation Induced Emission Dots for Ultrasensitive Fluorescence Biosensing

    No full text
    The development of ultrasensitive and highly selective fluorescence biosensors for diverse analytes is highly desirable but remains a challenge. It is attributable to the scarcity of fluorogens with promising brightness, stability, and nontoxicity, which primarily determine the performance of fluorescence biosensors. Herein, we report the design and preparation of aggregation induced emission (AIE) dots with high brightness, exceptional colloidal stability, ultrasmall size, and functional groups for developing ultrasensitive biosensor through the electrostatic conjugation to biological molecules, and use blemycin (BLM) as the proof-of-concept analyte. The recognition and the subsequent cleavage of the quencher-labeled DNA (Q-DNA) by BLM result in the formation of three-mer quencher-linked oligonucleotide fragments (Q-DNA-1), which significantly decreases the amount of quenchers anchored on AIE dot surfaces and subsequently reduces the fluorescence resonance energy transfer (FRET) effect. As compared to the case in which BLM is absent, remarkable fluorescence enhancement is observed, and is dependent on BLM concentration. Thus, ultrasensitive fluorescence detection of target BLM is realized, with a detection limit down to 3.4 fM, the lowest value reported so far. Moreover, the proposed fluorescence biosensor has also been successfully utilized for detection of BLM spiked in human serum samples. The as-proposed strategy not only significantly improves the selectivity and sensitivity of BLM assay, but also allows the ultrasensitive detection of a variety of bioactive molecules by simply changing the specific target recognition substances, thus providing a versatile fluorescence platform, and showing great potential to be applied in chemo-/bioanalysis and clinical biomedicine

    41-year-old female with a BMI of 27.7 diagnosed with thoracolumbar idiopathic scoliosis.

    No full text
    <p>(A) anterior-posterior standing and (B) standing lateral full-length spinal preoperative X-rays showing coronal imbalance and sagittal thoracolumbar kyphosis; (C) anterior-posterior standing and (D) standing lateral full-length spinal X-rays: the first post-surgical erect X-rays showing the correction and fusion; (E) anterior-posterior standing and (F) standing lateral full-length spinal X-rays: the two-year follow-up X-rays showed a good balance.</p

    Green Carbon Dots Illuminate Biogenic Nanohybrids toward Soft, Piezo/Photoactive, and Physically Transient Nanogenerators

    No full text
    Green electronics comprising degradable materials are ideal solutions for electronic wastes. Here, we report the construction of a soft, piezo/photoactive, and physically transient biogenic nanogenerator. A green luminescent, biogenic hybrid, carbon quantum dot (CQD)/cellulose nanocrystal (CNC)/polyhydroxybutyrate (PHB) nanofiber is manufactured with electrospinning technology. The synergy of CQD and CNC enables the enhancement of degradability of PHB. Simultaneously, the piezoelectric CNC makes a contribution to the piezoelectric response of the hybrid nanofiber. The appropriate inclusion of the CQD allows the creation of luminous, local stress concentration points that further enhance the piezoelectric response of the hybrid nanofiber. The output voltage and output current of the nanofibrous CQD/CNQ/PHB-based piezoelectric nanogenerator are 6.7 and 4.4 times higher than those of the state-of-the-art pristine PHB-based equivalent, respectively. This type of nanogenerator is also self-adaptive to changes in external mechanical stimuli. Moreover, the soft nanogenerator as a tactile sensor exhibits high reliability in the real-time dynamic sensing of athletic motions. Importantly, with a remarkable combination of piezoelectricity and photoluminescence, the biogenic nanogenerator array demonstrates the first application as a bimodal piezo/photo encryption alarm system. It shows great potential in the smart home and security field. We suppose that the multiple-responsive biogenic nanohybrids are very promising in green transient optoelectronics
    corecore