20 research outputs found

    Progress of the special-subjects study on the construction of comprehensive geological disaster prevention and control system in Yunnan Province

    Get PDF
    The establishment of the comprehensive geological disaster prevention and control system in Yunnan province stands as China’s most extensive and grand-scale endeavor in safeguarding the prevention and control of geological disasters in China. Its implementation has led to a significant reduction in the occurrence of geological disasters, resulting in a substantial decrease in both casualties and missing persons affected by such disasters. This accomplishment has yielded remarkable outcomes in disaster prevention and mitigation. Based on the results of 12 series monographic studies, this paper provides an overview of the implementation of the system and its disaster prevention and mitigation effects. It summarizes the main scientific and technological achievements, with a particular focus on the causes and patterns of plateau geological disasters, understanding of special rock and soil disaster control mechanisms, susceptibility zoning evaluation, comprehensive remote sensing identification of geological hazards, progress in automated monitoring and early warning, and the development of geological environment information standard system. These achievements can provide valuable insights for the comprehensive geological disaster prevention and control in Yunnan Province

    Crystal Structure of TDRD3 and Methyl-Arginine Binding Characterization of TDRD3, SMN and SPF30

    Get PDF
    SMN (Survival motor neuron protein) was characterized as a dimethyl-arginine binding protein over ten years ago. TDRD3 (Tudor domain-containing protein 3) and SPF30 (Splicing factor 30 kDa) were found to bind to various methyl-arginine proteins including Sm proteins as well later on. Recently, TDRD3 was shown to be a transcriptional coactivator, and its transcriptional activity is dependent on its ability to bind arginine-methylated histone marks. In this study, we systematically characterized the binding specificity and affinity of the Tudor domains of these three proteins quantitatively. Our results show that TDRD3 preferentially recognizes asymmetrical dimethylated arginine mark, and SMN is a very promiscuous effector molecule, which recognizes different arginine containing sequence motifs and preferentially binds symmetrical dimethylated arginine. SPF30 is the weakest methyl-arginine binder, which only binds the GAR motif sequences in our library. In addition, we also reported high-resolution crystal structures of the Tudor domain of TDRD3 in complex with two small molecules, which occupy the aromatic cage of TDRD3

    Supporting Design Optimization of Tunnel Boring Machines-Excavated Coal Mine Roadways: A Case Study in Zhangji, China

    No full text
    Tunnel Boring Machines (TBMs) are a cutting-edge excavating equipment, but are barely applied in underground coal mines. For TBM excavation projects involving the Zhangji coal mine, the surrounding rock properties, stress field, cross section geometry, as well as the excavation-induced stress path of TBM-excavated coal mine roadways are different from those of traditional tunnels or roadways. Consequently, traditional roadway supporting technologies and experiences cannot be relied on for this project. In order to research an appropriate supporting pattern for a TBM-excavated coal mine roadway, first of all, the constitutive model of roadway surrounding rocks was derived, and a rock failure criterion was proposed based on rock mechanical tests. Secondly, a three-dimension finite element model was established and computer simulations under three different supporting patterns were conducted. Stress redistribution, roadway convergence, and excavation damage zone ranges of surrounding rocks under three different support patterns were analyzed and an optimal support design of the TBM-excavated roadway was made based on simulation results. During roadway excavation, convergence gauge and rock bolt dynamometers were installed for monitoring roadway convergence and the axial forces of rock bolts. The in-situ monitoring results verified the validity of roadway supporting designs

    Enhanced superconductivity induced by several-unit-cells diffusion in an FeTe/FeSe bilayer heterostructure

    Get PDF
    Unlike monolayer Fe-Chalcogenide (Fe-Ch)/SrTiO3 (STO), which possesses the potential for high-temperature superconductivity (HTS), a regular Fe-Ch thin film grown on a non-STO substrate by the pulsed laser deposition method shows totally different superconducting behavior and a different mechanism. Although regular Fe-Ch thick films grown on CaF2 generally show the highest superconducting transition temperature (Tc) compared with any other substrates, the disappearance of superconductivity always takes place when the thickness of the Fe-Ch film is reduced to a critical value (∼20nm for Fe-Se and ∼30nm for Fe-Se-Te) with the reason still under debate. Here, we report an enhanced Tc≈17.6K in a 7-nm-FeTe/7-nm-FeSe bilayer heterostructure grown on CaF2 substrate. Generally, the Fe-Ch film on CaF2 is supposed to be one order of magnitude greater in thickness to achieve similar performance. Hall measurements manifest the dominant nature of hole-type carriers in the films in this work, which is similar to the case of a pressurized bulk FeSe single crystal, while in sharp contrast to heavily electron-doped HTS Fe-Ch systems. According to the electron energy loss spectroscopy results, we observed direct evidence of nanoscale phase separation in the form of a fluctuation of the Fe-L3/L2 ratio near the FeTe/FeSe interface. In detail, a several-unit-cell-thick Fe(Se,Te) diffusion layer shows a higher Fe-L3/L2 ratio than either an FeTe or an FeSe layer, indicating low Fe 3d electron occupancy, which is, to some extent, consistent with the hole-dominant scenario obtained from the Hall results. It also implies a possible relationship between the state of Fe 3d electron occupancy and the enhanced Tc in this work. Our work clarifies the importance of the FeTe/FeSe interface in reviving the superconductivity in Fe-Ch ultrathin films, contributing to a more unified understanding of unconventional Fe-Ch superconductivity

    Double Knockdown of PHD1 and Keap1 Attenuated Hypoxia-Induced Injuries in Hepatocytes

    No full text
    Background and Aims: Hypoxia and oxidative stress contribute toward liver fibrosis. In this experiment, we used small hairpin RNA (shRNA) to interfere with the intracellular oxygen sensor—prolyl hydroxylase 1 (PHD1) and the intracellular oxidative stress sensor—kelch-like ECH associated protein 1 (Keap1) in the hypoxic hepatocytes in order to investigate the function of PHD1and Keap1.Methods: We first established the CCl4-induced liver fibrosis model, subsequently, the levels of the PHD1, hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), Keap1, and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) were detected in liver tissues. Simultaneously, AML12 cells co-transfected with PHD1 and Keap1shRNAs were constructed in vitro, then the intracellular oxidative stress, the proportion of cells undergoing apoptosis, and cell viability were measured. The expression of pro-fibrogenic molecules were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The level of alpha-1 type I collagen (COL1A1) was determined using an enzyme-linked immunosorbent assay (ELISA). Finally, serum-free “conditioned medium” (CM) from the supernatant of hypoxic AML12 hepatocytes was used to culture rat hepatic stellate cells (HSC-T6), and the levels of fibrosis-related molecules, apoptosis, and cell proliferation were determined.Results: The marker of hypoxia—HIF-1α and HIF-2α in the livers with fibrosis were upregulated, however, the increase in PHD1 expression was not statistically significant in comparison to the control group. Sign of oxidative stress—Keap1 was increased, while the expression of Nrf2, one of the Keap1 main downstream molecules, was reduced in the hepatocytes. And in vitro, the double-knockdown of PHD1 and Keap1 in AML12 hepatocytes presented with decreased hypoxia-induced oxidative stress and apoptosis, furthermore, these hypoxic AML12 cells showed the increased cell viability and the doweregulated expression of pro-fibrogenic molecules. In addition, HSC-T6 cells cultured in the hypoxic double-knockdown CM demonstrated the downregulation of fibrosis-related molecules, diminished cell proliferation, and enhanced apoptosis.Conclusions: Our study demonstrated that double-knockdown of PHD1 and Keap1 attenuated hypoxia and oxidative stress induced injury in the hepatocytes, and subsequently inhibited HSC activation, which offers a novel therapeutic strategy in the prophylaxis and treatment of liver fibrosis

    The Interface Structure of FeSe Thin Film on CaF2 Substrate and its Influence on the Superconducting Performance

    No full text
    The investigations into the interfaces in iron selenide (FeSe) thin films on various substrates have manifested the great potential of showing high-temperature-superconductivity in this unique system. In present work, we obtain FeSe thin films with a series of thicknesses on calcium fluoride (CaF2) (100) substrates and glean the detailed information from the FeSe/CaF2 interface by using scanning transmission electron microscopy (STEM). Intriguingly, we have found the universal existence of a calcium selenide (CaSe) interlayer with a thickness of approximate 3 nm between FeSe and CaF2 in all the samples, which is irrelevant to the thickness of FeSe layers. A slight Se deficiency occurs in the FeSe layer due to the formation of CaSe interlayer. This Se deficiency is generally negligible except for the case of the ultrathin FeSe film (8 nm in thickness), in which the stoichiometric deviation from FeSe is big enough to suppress the superconductivity. Meanwhile, in the overly thick FeSe layer (160 nm in thickness), vast precipitates are found and recognized as Fe-rich phases, which brings about degradation in superconductivity. Consequently, the thickness dependence of superconducting transition temperature (Tc) of FeSe thin films is investigated and one of our atmosphere-stable FeSe thin film (127 nm) possesses the highest Tconset/Tczero as 15.1 K/13.4 K on record to date in the class of FeSe thin film with practical thickness. Our results provide a new perspective for exploring the mechanism of superconductivity in FeSe thin film via high-resolution STEM. Moreover, approaches that might improve the quality of FeSe/CaF2 interfaces are also proposed for further enhancing the superconducting performance in this system

    The Interface Structure of FeSe Thin Film on CaF<sub>2</sub> Substrate and its Influence on the Superconducting Performance

    No full text
    The investigations into the interfaces in iron selenide (FeSe) thin films on various substrates have manifested the great potential of showing high-temperature-superconductivity in this unique system. In present work, we obtain FeSe thin films with a series of thicknesses on calcium fluoride (CaF<sub>2</sub>) (100) substrates and glean the detailed information from the FeSe/CaF<sub>2</sub> interface by using scanning transmission electron microscopy (STEM). Intriguingly, we have found the universal existence of a calcium selenide (CaSe) interlayer with a thickness of approximate 3 nm between FeSe and CaF<sub>2</sub> in all the samples, which is irrelevant to the thickness of FeSe layers. A slight Se deficiency occurs in the FeSe layer due to the formation of CaSe interlayer. This Se deficiency is generally negligible except for the case of the ultrathin FeSe film (8 nm in thickness), in which the stoichiometric deviation from FeSe is big enough to suppress the superconductivity. Meanwhile, in the overly thick FeSe layer (160 nm in thickness), vast precipitates are found and recognized as Fe-rich phases, which brings about degradation in superconductivity. Consequently, the thickness dependence of superconducting transition temperature (<i>T</i><sub>c</sub>) of FeSe thin films is investigated and one of our atmosphere-stable FeSe thin film (127 nm) possesses the highest <i>T</i><sub>c</sub><sup>onset</sup>/<i>T</i><sub>c</sub><sup>zero</sup> as 15.1 K/13.4 K on record to date in the class of FeSe thin film with practical thickness. Our results provide a new perspective for exploring the mechanism of superconductivity in FeSe thin film via high-resolution STEM. Moreover, approaches that might improve the quality of FeSe/CaF<sub>2</sub> interfaces are also proposed for further enhancing the superconducting performance in this system

    Photoinduced Metal-Free Atom Transfer Radical Polymerization of Biomass-Based Monomers

    No full text
    Well-defined polymers derived from biomass feedstock (e.g., soybean oil, rosin acid, and furfural) were successfully prepared by metal-free atom transfer radical polymerization (ATRP). In the presence of photoredox catalysts and UV irradiation, three biomass-based methacrylate monomers were efficiently polymerized with good control over molecular weight and dispersity. NMR and MALDI-TOF MS confirmed high fidelity of chain end groups originated from initiators. Furthermore, block copolymers from these monomers were also achieved through chain extension by metal-free ATRP
    corecore