1,452 research outputs found

    SSthreshless Start: A Sender-Side TCP Intelligence for Long Fat Network

    Full text link
    Measurement shows that 85% of TCP flows in the internet are short-lived flows that stay most of their operation in the TCP startup phase. However, many previous studies indicate that the traditional TCP Slow Start algorithm does not perform well, especially in long fat networks. Two obvious problems are known to impact the Slow Start performance, which are the blind initial setting of the Slow Start threshold and the aggressive increase of the probing rate during the startup phase regardless of the buffer sizes along the path. Current efforts focusing on tuning the Slow Start threshold and/or probing rate during the startup phase have not been considered very effective, which has prompted an investigation with a different approach. In this paper, we present a novel TCP startup method, called threshold-less slow start or SSthreshless Start, which does not need the Slow Start threshold to operate. Instead, SSthreshless Start uses the backlog status at bottleneck buffer to adaptively adjust probing rate which allows better seizing of the available bandwidth. Comparing to the traditional and other major modified startup methods, our simulation results show that SSthreshless Start achieves significant performance improvement during the startup phase. Moreover, SSthreshless Start scales well with a wide range of buffer size, propagation delay and network bandwidth. Besides, it shows excellent friendliness when operating simultaneously with the currently popular TCP NewReno connections.Comment: 25 pages, 10 figures, 7 table

    Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drought is one of the most important environmental factors causing water stress for cotton, and it greatly limits cotton growth and crop productivity. So far only a few drought-tolerance genes have been functionally characterized in details, and most efforts on this topic have been made in model organisms. Therefore, to identify more drought-related genes in cotton plays a crucial role in elucidating the underlying mechanisms of drought tolerance as well as utilizing bioengineering techniques to improve the tolerance in this organism.</p> <p>Findings</p> <p>Here we constructed a subtractive drought-tolerance cDNA library using suppressive subtractive hybridization (SSH). Through differential screening and bioinformatics analysis, we identified 392 positive clones with differential expression, corresponding 265 unique genes. By BLAST search against Genbank, we found that more than half of these EST sequences were homologous to those previously known drought-related genes and that there were 57 sequences with unknown functions, suggesting that many more genes are involved in this complex trait. Moreover, using RT-PCR, we examined the expression of nine representative candidate genes and confirmed that their expression levels were increased at different levels under drought stress.</p> <p>Conclusion</p> <p>Our results show that drought tolerance is a complex trait in cotton, which involves the coordination of many genes and multiple metabolism pathways. The candidate EST sequences we identified here would facilitate further functional studies of drought-related genes and provide important insights into the molecular mechanisms of drought-stress tolerance and genetic breeding in cotton.</p

    Reaction Behaviors of Bagasse Modified with Phthalic Anhydride in 1‐Allyl‐3‐Methylimidazolium Chloride with Catalyst 4‐Dimethylaminopyridine

    Get PDF
    The modification of lignocellulose with cyclic anhydrides could confer stronger hydrophilic properties to lignocellulose, which could be used in many industrial fields. To elucidate the modification mechanism of lignocellulose, bagasse was phthalated comparatively with its three main components in 1‐allyl‐3‐methylimidazolium chloride (AmimCl) using 4‐dimethylaminopyridine as catalyst and phthalic anhydride as acylation reagent in the present study. From FT‐IR and 2D HSQC analyses, the skeleton of bagasse and the fractions were not significantly changed during phthalation in AmimCl. 2D HSQC results suggested that the reactive hydroxyls in bagasse were partially phthalated, and the reactivity of the hydroxyls in anhydroglucose units followed the order C‐6 > C‐2 > C‐3. Similarly, the reactivity order of hydroxyls in anhydroxylose units was C‐2 > C‐3. For lignin, the predominant diesterification occurred during the homogeneous modification, and both aliphatic and aromatic hydroxyls were phthalated. The reactivity order of phenolic hydroxyls was S‐OH > G‐OH > H‐OH, which was distinct from that without catalyst. In addition, it was found that the thermal stability of phthalated bagasse was affected by the disruption of cellulose crystallinity and the degradation of components. The thermal stability of the phthalated bagasse decreased upon chemical modification and regeneration

    Ikbkap/Elp1 Deficiency Causes Male Infertility by Disrupting Meiotic Progression

    Get PDF
    Mouse Ikbkap gene encodes IKAP—one of the core subunits of Elongator—and is thought to be involved in transcription. However, the biological function of IKAP, particularly within the context of an animal model, remains poorly characterized. We used a loss-of-function approach in mice to demonstrate that Ikbkap is essential for meiosis during spermatogenesis. Absence of Ikbkap results in defects in synapsis and meiotic recombination, both of which result in increased apoptosis and complete arrest of gametogenesis. In Ikbkap-mutant testes, a few meiotic genes are down-regulated, suggesting IKAP's role in transcriptional regulation. In addition, Ikbkap-mutant testes exhibit defects in wobble uridine tRNA modification, supporting a conserved tRNA modification function from yeast to mammals. Thus, our study not only reveals a novel function of IKAP in meiosis, but also suggests that IKAP contributes to this process partly by exerting its effect on transcription and tRNA modification
    • 

    corecore