71 research outputs found

    The pancreatic β cell is a key site for mediating the effects of leptin on glucose homeostasis

    Get PDF
    SummaryThe hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic β cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in β cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence β cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity

    The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity

    Get PDF
    The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis

    An Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72661/1/j.1749-6632.2009.05061.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72661/2/NYAS_5061_sm_SuppMat.pd

    Leptin Receptor Signaling Supports Cancer Cell Metabolism through Suppression of Mitochondrial Respiration in Vivo

    No full text
    Obesity represents a risk factor for certain types of cancer. Leptin, a hormone predominantly produced by adipocytes, is elevated in the obese state. In the context of breast cancer, leptin derived from local adipocytes is present at high concentrations within the mammary gland. A direct physiological role of peripheral leptin action in the tumor microenvironment in vivo has not yet been examined. Here, we report that mice deficient in the peripheral leptin receptor, while harboring an intact central leptin signaling pathway, develop a fully mature ductal epithelium, a phenomenon not observed in db/db mice to date. In the context of the MMTV-PyMT mammary tumor model, the lack of peripheral leptin receptors attenuated tumor progression and metastasis through a reduction of the ERK1/2 and Jak2/STAT3 pathways. These are tumor cell-autonomous properties, independent of the metabolic state of the host. In the absence of leptin receptor signaling, the metabolic phenotype is less reliant on aerobic glycolysis and displays an enhanced capacity for β-oxidation, in contrast to nontransformed cells. Leptin receptor-free tumor cells display reduced STAT3 tyrosine phosphorylation on residue Y705 but have increased serine phosphorylation on residue S727, consistent with preserved mitochondrial function in the absence of the leptin receptor. Therefore, local leptin action within the mammary gland is a critical mediator, linking obesity and dysfunctional adipose tissue with aggressive tumor growth
    corecore