8 research outputs found

    Local Dexamethasone Administration Delays Allogeneic Islet Graft Rejection in the Anterior Chamber of the Eye of Non-Human Primates

    Get PDF
    Pancreatic islet transplantation into the anterior chamber of the eye (ACE) has been shown to improve glycemic control and metabolic parameters of diabetes in both murine and primate models. This novel transplantation site also allows the delivery of therapeutic agents, such as immunosuppressive drugs, locally to prevent islet graft rejection and circumvent unwanted systemic side effects. Local intravitreal administration of micronized dexamethasone implant was performed prior to allogeneic islet transplantation into the ACEs of non-human primates. Two study groups were observed namely allogeneic graft without immunosuppression (n = 4 eyes) and allogeneic graft with local immunosuppression (n = 8 eyes). Survival of islet grafts and dexamethasone concentration in the ACE were assessed in parallel for 24 weeks. Allogeneic islet grafts with local dexamethasone treatment showed significantly better survival than those with no immunosuppression (median survival time- 15 weeks vs 3 weeks, log-rank test p<0.0001). Around 73% of the grafts still survived at week 10 with a single local dexamethasone implant, where the control group showed no graft survival. Dexamethasone treated islet grafts revealed a good functional response to high glucose stimulation despite there was a transient suppression of insulin secretion from week 8 to 12. Our findings show a significant improvement of allografts survival in the ACE with local dexamethasone treatment. These results highlight the feasibility of local administration of pharmacological compounds in the ACE to improve islet graft survival and function. By eliminating the need for systemic immunosuppression, these findings may impact clinical islet transplantation in the treatment of diabetes, and the ACE may serve as a novel therapeutic islet transplantation site with high potential for local pharmacological intervention

    Destabilization of β Cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes

    Get PDF
    Western-type diets are linked to obesity and diabetes partly because of their high–saturated fatty acid (SFA) content. We found that SFAs, but not unsaturated fatty acids (USFAs), reduced lipid droplets (LDs) within pancreatic β cells. Mechanistically, SFAs, but not USFAs, reduced LD formation by inducing S-acylation and proteasomal, mediated degradation of fat storage–inducing transmembrane protein 2 (FIT2), an endoplasmic reticulum (ER) resident protein important for LD formation. Targeted ablation of FIT2 reduced β cell LD numbers, lowered β cell ATP levels, reduced Ca(2+) signaling, dampened vesicle exocytosis, down-regulated β cell transcription factors, up-regulated unfolded protein response genes, and finally, exacerbated diet-induced diabetes in mice. Subsequent mass spectrometry studies revealed increased C16:0 ceramide accumulation in islets of diet-induced diabetes mice lacking β cell FIT2. Inhibition of ceramide synthases ameliorated the enhanced ER stress and improved insulin secretion. FIT2 was reduced in mouse diabetic islets, and separately, overexpression of FIT2 increased the number of intracellular LDs and rescued SFA-induced ER stress and apoptosis, thereby highlighting the protective role of FIT2 and LDs against β cell lipotoxicity

    Pancreatic Islet Blood Flow Dynamics in Primates

    No full text
    Blood flow regulation in pancreatic islets is critical for function but poorly understood. Here, we establish an in vivo imaging platform in a non-human primate where islets transplanted autologously into the anterior chamber of the eye are monitored non-invasively and longitudinally at single-cell resolution. Engrafted islets were vascularized and innervated and maintained the cytoarchitecture of in situ islets in the pancreas. Blood flow velocity in the engrafted islets was not affected by increasing blood glucose levels and/or the GLP-1R agonist liraglutide. However, islet blood flow was dynamic in nature and fluctuated in various capillaries. This was associated with vasoconstriction events resembling a sphincter-like action, most likely regulated by adrenergic signaling. These observations suggest a mechanism in primate islets that diverts blood flow to cell regions with higher metabolic demand. The described imaging technology applied in non-human primate islets may contribute to a better understanding of human islet pathophysiology.NMRC (Natl Medical Research Council, S’pore)Published versio

    Coordination-Resolved Electron Spectrometrics

    No full text
    corecore