29 research outputs found

    SIMULATION-BASED DESIGN AND MATERIAL MODELING FOR ENT IMPLANTS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    BiRA-Net: Bilinear Attention Net for Diabetic Retinopathy Grading

    Full text link
    Diabetic retinopathy (DR) is a common retinal disease that leads to blindness. For diagnosis purposes, DR image grading aims to provide automatic DR grade classification, which is not addressed in conventional research methods of binary DR image classification. Small objects in the eye images, like lesions and microaneurysms, are essential to DR grading in medical imaging, but they could easily be influenced by other objects. To address these challenges, we propose a new deep learning architecture, called BiRA-Net, which combines the attention model for feature extraction and bilinear model for fine-grained classification. Furthermore, in considering the distance between different grades of different DR categories, we propose a new loss function, called grading loss, which leads to improved training convergence of the proposed approach. Experimental results are provided to demonstrate the superior performance of the proposed approach.Comment: Accepted at ICIP 201

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Facial expression classification using salient pattern driven integrated geometric and textual features

    No full text
    10.1007/s11042-018-6133-zMultimedia Tools and Application

    Propulsion-Based Soft Robotic Actuation

    No full text
    The use of air propulsion to drive limb motion in soft robotics has been a largely untapped field even though the technology has been around since the 1700s. Air propulsion can generate greater degrees of motion in limb actuators compared to widely-experimented pneumatic actuators operating on expandable air channels, which are limited by air pressure input, minimum size and cyclic fatigue. To demonstrate the application of air propulsion in soft robotics motion, we developed a 3D-printed, tri-pedal, soft, air-driven robot that can perform biomimetic motions such as flexion and extension of limbs, crawling, rotation, grasping, kicking and picking of objects. To accomplish air-propelled actuation, milli-scale channels are incorporated throughout each limb that guides the pressurized air inflow to outlets of different directions. A Finite Element Model (FEM) approach to simulate the bending response of the limb due to varying pressure is proposed and evaluated. This study introduces the potential of using air propulsion as an alternate form of soft body actuation for longer cyclic lifespan and increased maximum air pressure input

    Design and Characterization of a Soft Robotic Therapeutic Glove for Rheumatoid Arthritis

    No full text
    10.1080/10400435.2017.1346000Assistive Technology31144-5

    An ensemble prediction approach to weekly Dengue cases forecasting based on climatic and terrain conditions

    No full text
    Introduction: Dengue fever has been one of the most concerning endemic diseases of recent times. Every year, 50-100 million people get infected by the dengue virus across the world. Historically, it has been most prevalent in Southeast Asia and the Pacific Islands. In recent years, frequent dengue epidemics have started occurring in Latin America as well. This study focused on assessing the impact of different short and long-term lagged climatic predictors on dengue cases. Additionally, it assessed the impact of building an ensemble model using multiple time series and regression models, in improving prediction accuracy. Materials and Methods: Experimental data were based on two Latin American cities, viz. San Juan (Puerto Rico) and Iquitos (Peru). Due to weather and geographic differences, San Juan recorded higher dengue incidences than Iquitos. Using lagged cross-correlations, this study confirmed the impact of temperature and vegetation on the number of dengue cases for both cities, though in varied degrees and time lags. An ensemble of multiple predictive models using an elaborate set of derived predictors was built and validated. Results: The proposed ensemble prediction achieved a mean absolute error of 21.55, 4.26 points lower than the 25.81 obtained by a standard negative binomial model. Changes in climatic conditions and urbanization were found to be strong predictors as established empirically in other researches. Some of the predictors were new and informative, which have not been explored in any other relevant studies yet. Discussion and Conclusions: Two original contributions were made in this research. Firstly, a focused and extensive feature engineering aligned with the mosquito lifecycle. Secondly, a novel covariate pattern-matching based prediction approach using past time series trend of the predictor variables. Increased accuracy of the proposed model over the benchmark model proved the appropriateness of the analytical approach for similar epidemic prediction research

    A novel bidirectional LSTM deep learning approach for COVID-19 forecasting

    No full text
    Abstract COVID-19 has resulted in significant morbidity and mortality globally. We develop a model that uses data from thirty days before a fixed time point to forecast the daily number of new COVID-19 cases fourteen days later in the early stages of the pandemic. Various time-dependent factors including the number of daily confirmed cases, reproduction number, policy measures, mobility and flight numbers were collected. A deep-learning model using Bidirectional Long-Short Term Memory (Bi-LSTM) architecture was trained on data from 22nd Jan 2020 to 8 Jan 2021 to forecast the new daily number of COVID-19 cases 14 days in advance across 190 countries, from 9 to 31 Jan 2021. A second model with fewer variables but similar architecture was developed. Results were summarised by mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and total absolute percentage error and compared against results from a classical ARIMA model. Median MAE was 157 daily cases (IQR: 26–666) under the first model, and 150 (IQR: 26–716) under the second. Countries with more accurate forecasts had more daily cases and experienced more waves of COVID-19 infections. Among countries with over 10,000 cases over the prediction period, median total absolute percentage error was 33% (IQR: 18–59%) and 34% (IQR: 16–66%) for the first and second models respectively. Both models had comparable median total absolute percentage errors but lower maximum total absolute percentage errors as compared to the classical ARIMA model. A deep-learning approach using Bi-LSTM architecture and open-source data was validated on 190 countries to forecast the daily number of cases in the early stages of the COVID-19 outbreak. Fewer variables could potentially be used without impacting prediction accuracy
    corecore