3,099 research outputs found

    A Neural Network Decision Method for Software Maintenance Life Cycle Identification

    Get PDF
    The software maintenance life cycle concept is a powerful model in helping software maintenance planning. The operationalization of the life cycle concept requires a heuristic decision method. Although the heuristic decision method works most of the time, the method requires integration of different tools and sometimes leads to errors. In this paper, we propose a neural network decision method, which combines data smoothing and maintenance stage identification into one unit

    The Effect of Advertisement Frequency on the Advertisement Attitude-The controlled Effects of Brand Image and Spokesperson's Credibility

    Get PDF
    AbstractAdvertising has been playing a critical channel of communication between enterprises and consumers. To reinforce consumers’ impressions of advertising, enterprises, based on their brand image, strive for the right spokesperson for their products or service. However, in addition to brand image and spokespersons, advertising frequency that can impress general populace is also a factor to affect the consumers’ attitude to the advertisement. This paper discusses not only the effect of brand image and spokesperson's credibility but also the effect of advertising frequency on consumers’ attitude. This study was conducted by the experimental design. The study sample comprised 457 college students. Analysed by ANCOVA, the results showed that the brand image and the spokesperson's credibility both had a significantly positive influence on consumers’ attitude to advertising. Moreover, advertising frequency was significantly influential, too. Theoretical and practical implications of this study were stated for future study

    The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion

    Get PDF
    BACKGROUND: The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. METHODS: Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. RESULTS: The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. CONCLUSIONS: The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration

    Overview of Some Intelligent Control Structures and Dedicated Algorithms

    Get PDF
    Automatic control refers to the use of a control device to make the controlled object automatically run or keep the state unchanged without the participation of people. The guiding ideology of intelligent control is based on people’s way of thinking and ability to solve problems, in order to solve the current methods that require human intelligence. We already know that the complexity of the controlled object includes model uncertainty, high nonlinearity, distributed sensors/actuators, dynamic mutations, multiple time scales, complex information patterns, big data process, and strict characteristic indicators, etc. In addition, the complexity of the environment manifests itself in uncertainty and uncertainty of change. Based on this, various researches continue to suggest that the main methods of intelligent control can include expert control, fuzzy control, neural network control, hierarchical intelligent control, anthropomorphic intelligent control, integrated intelligent control, combined intelligent control, chaos control, wavelet theory, etc. However, it is difficult to want all the intelligent control methods in a chapter, so this chapter focuses on intelligent control based on fuzzy logic, intelligent control based on neural network, expert control and human-like intelligent control, and hierarchical intelligent control and learning control, and provide relevant and useful programming for readers to practice

    Modeling of Location Estimation for Object Tracking in WSN

    Get PDF
    Location estimation for object tracking is one of the important topics in the research of wireless sensor networks (WSNs). Recently, many location estimation or position schemes in WSN have been proposed. In this paper, we will propose the procedure and modeling of location estimation for object tracking in WSN. The designed modeling is a simple scheme without complex processing. We will use Matlab to conduct the simulation and numerical analyses to find the optimal modeling variables. The analyses with different variables will include object moving model, sensing radius, model weighting value α, and power-level increasing ratio k of neighboring sensor nodes. For practical consideration, we will also carry out the shadowing model for analysis

    R-process nucleosynthesis during explosion of low-mass neutron stars in close binaries

    Full text link
    We investigate the explosion of low-mass neutron stars through Newtonian hydrodynamic simulations. We couple the hydrodynamics to a nuclear reaction network consisting of ∼4500\sim 4500 isotopes to study the impact of nuclear reactions, mainly neutron capture, β\beta-decays, and spontaneous fission of nuclei, on the development of hydrodynamic instability of a neutron star. We show that after mass removal from the surfaces, low-mass neutron stars undergo delayed explosion, and an electron anti-neutrino burst with a peak luminosity of ∼3×1050\sim3\times10^{50} erg s−1^{-1} is emitted, while the ejecta is heated to ∼109\sim10^{9} K. A robust r-process nucleosynthesis is realized in the ejecta. Lanthanides and heavy elements near the second and third r-process peaks are synthesized as end products of nucleosynthesis, suggesting that the explosions of low-mass neutron stars could be a potentially important source of solar chemical elements.Comment: 12 pages, 13 figure
    • …
    corecore