137 research outputs found
Quantum-implemented selective reconstruction of high-resolution images
This paper proposes quantum image reconstruction. Input-triggered selection
of an image among many stored ones, and its reconstruction if the input is
occluded or noisy, has been simulated by a computer program implementable in a
real quantum-physical system. It is based on the Hopfield associative net; the
quantum-wave implementation bases on holography. The main limitations of the
classical Hopfield net are much reduced with the new, original --
quantum-optical -- implementation. Image resolution can be almost arbitrarily
increased.Comment: 4 pages, 15 figures, essential
Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion
Real-time on-device continual learning applications are used on mobile
phones, consumer robots, and smart appliances. Such devices have limited
processing and memory storage capabilities, whereas continual learning acquires
data over a long period of time. By necessity, lifelong learning algorithms
have to be able to operate under such constraints while delivering good
performance. This study presents the Explainable Lifelong Learning (ExLL)
model, which incorporates several important traits: 1) learning to learn, in a
single pass, from streaming data with scarce examples and resources; 2) a
self-organizing prototype-based architecture that expands as needed and
clusters streaming data into separable groups by similarity and preserves data
against catastrophic forgetting; 3) an interpretable architecture to convert
the clusters into explainable IF-THEN rules as well as to justify model
predictions in terms of what is similar and dissimilar to the inference; and 4)
inferences at the global and local level using a pairwise decision fusion
process to enhance the accuracy of the inference, hence ``Glocal Pairwise
Fusion.'' We compare ExLL against contemporary online learning algorithms for
image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate
several continual learning scenarios for video streams, low-sample learning,
ability to scale, and imbalanced data streams. The algorithms are evaluated for
their performance in accuracy, number of parameters, and experiment runtime
requirements. ExLL outperforms all algorithms for accuracy in the majority of
the tested scenarios.Comment: 24 pages, 8 figure
A Self-learning Nonlinear Variable Gain Proportional Derivative (PD) Controller in Robot Manipulators
This paper proposes a nonlinear variable gain Proportional-Derivative (PD) controller
that exhibits self-constructing and self-learning capabilities. In this method, the
conventional linear PD controller is augmented with a nonlinear variable PD gain control
signal using a dynamic structural network. The dynamic structural network known as
Growing Multi-Experts etwork grows in time by placing hidden nodes in regions of the
state space visited by the system during operation. This results in a network that is
"economic" in terms of network sileo The proposed approach enhances the adaptability
of conventional PD controller while preserving its' linear structure. Based on the
simulation study on variable load and friction compensation, the fast adaptation is shown
to be able to compensate the non-linearity and the uncertainty in the robotic system
Development of Biological Movement Recognition by Interaction between Active Basis Model and Fuzzy Optical Flow Division
Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach
Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement
Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility
Multi-label Classification via Adaptive Resonance Theory-based Clustering
This paper proposes a multi-label classification algorithm capable of
continual learning by applying an Adaptive Resonance Theory (ART)-based
clustering algorithm and the Bayesian approach for label probability
computation. The ART-based clustering algorithm adaptively and continually
generates prototype nodes corresponding to given data, and the generated nodes
are used as classifiers. The label probability computation independently counts
the number of label appearances for each class and calculates the Bayesian
probabilities. Thus, the label probability computation can cope with an
increase in the number of labels. Experimental results with synthetic and
real-world multi-label datasets show that the proposed algorithm has
competitive classification performance to other well-known algorithms while
realizing continual learning
- …