20,805 research outputs found
Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2
The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides
because the Co sits on a triangular lattice and its valence can be tuned over a
wide range by varying the Na concentration x. Up to now detailed modeling of
the rich phenomenology (which ranges from unconventional superconductivity to
enhanced thermopower) has been hampered by the difficulty of controlling pure
phases. We discovered that certain Na concentrations are specially stable and
are associated with superlattice ordering of the Na clusters. This leads
naturally to a picture of co-existence of localized spins and itinerant charge
carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our
picture brings coherence to a variety of measurements ranging from NMR to
optical to thermal transport. Our results also allow us to take the first step
towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We
suggest the local moments may form a quantum spin liquid state and we propose
experimental test of our hypothesis.Comment: 16 pages, 5 figure
Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3
We studied the defects of Bi2Se3 generated from Bridgman growth of
stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size,
and transport properties are strongly affected by the types of defect
generated. Major defect types of Bi_Se antisite and partial Bi_2-layer
intercalation are identified through combined studies of direct atomic-scale
imaging with scanning transmission electron microscopy (STEM) in conjunction
with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and
Hall effect measurements. We propose a consistent explanation to the origin of
defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure
Shallow BF2 implants in Xe-bombardment-preamorphized Si: the interaction between Xe and F
Si(100) samples, preamorphized to a depth of ~30 nm using 20 keV Xe ions to a nominal fluence of 2×1014 cm-2 were implanted with 1 and 3 keV BF2 ions to fluences of 7×1014 cm-2. Following annealing over a range of temperatures (from 600 to 1130 °C) and times the implant redistribution was investigated using medium-energy ion scattering (MEIS), secondary ion mass spectrometry (SIMS), and energy filtered transmission electron microscopy (EFTEM). MEIS studies showed that for all annealing conditions leading to solid phase epitaxial regrowth, approximately half of the Xe had accumulated at depths of 7 nm for the 1 keV and at 13 nm for the 3 keV BF2 implant. These depths correspond to the end of range of the B and F within the amorphous Si. SIMS showed that in the preamorphized samples, approximately 10% of the F migrates into the bulk and is trapped at the same depths in a ~1:1 ratio to Xe. These observations indicate an interaction between the Xe and F implants and a damage structure that becomes a trapping site. A small fraction of the implanted B is also trapped at this depth. EXTEM micrographs suggest the development of Xe agglomerates at the depths determined by MEIS. The effect is interpreted in terms of the formation of a volume defect structure within the amorphized Si, leading to F stabilized Xe agglomerates or XeF precipitates
Noncommutative electrodynamics and ultra high energy gamma rays
Plane waves in noncommutative classical electrodynamics (NCED) have a
peculiar dispersion relation. We investigate the kinematical conditions on this
deformed "mass shell" which come from ultra high energy gamma rays and discuss
noncommutative dynamical effects on the gamma absorption by the infrared
background and on the intrinsic spectrum. Finally we note that in NCED there is
a strong correlation between the modified dispersion relation and the presence
of dynamical effects in electromagnetic phenomena such as in the case of the
synchrotron radiation. From this point of view, the limits on the typical
energy scale of the violation of Lorentz invariance obtained by deformed
dispersion relations and by assuming undeformed dynamical effects should be
taken with some caution.Comment: Latex file, 7 pages, to be published in Europhysics Letter
High Pressure Study on MgB2
The hydrostatic pressure effect on the newly discovered superconductor MgB2
has been determined. The transition temperature Tc was found to decrease
linearly at a large rate of -1.6 K/GPa, in good quantitative agreement with the
ensuing calculated value of -1.4 K/GPa within the BCS framework by Loa and
Syassen, using the full-potential linearlized augmented plane-wave method. The
relative pressure coefficient, dlnTc/dp, for MgB2 also falls between the known
values for conventional sp- and d-superconductors. The observation, therefore,
suggests that electron-phonon interaction plays a significant role in the
superconductivity of the compound.Comment: 8 pages, 3 figures; submitted to Physical Review B (February 14,
2001; revised March 21, 2001); minor modifications, including a discussion of
the preprint by Vogt et a
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Energy focusing inside a dynamical cavity
We study the exact classical solutions for a real scalar field inside a
cavity with a wall whose motion is self-consistently determined by the pressure
of the field itself. We find that, regardless of the system parameters, the
long-time solution always becomes nonadiabatic and the field's energy
concentrates into narrow peaks, which we explain by means of a simple
mechanical system. We point out implications for the quantized theory.Comment: 5 pages, 6 figures, double column, submitted to P.R.
Scaling properties of cavity-enhanced atom cooling
We extend an earlier semiclassical model to describe the dissipative motion
of N atoms coupled to M modes inside a coherently driven high-finesse cavity.
The description includes momentum diffusion via spontaneous emission and cavity
decay. Simple analytical formulas for the steady-state temperature and the
cooling time for a single atom are derived and show surprisingly good agreement
with direct stochastic simulations of the semiclassical equations for N atoms
with properly scaled parameters. A thorough comparison with standard free-space
Doppler cooling is performed and yields a lower temperature and a cooling time
enhancement by a factor of M times the square of the ratio of the atom-field
coupling constant to the cavity decay rate. Finally it is shown that laser
cooling with negligible spontaneous emission should indeed be possible,
especially for relatively light particles in a strongly coupled field
configuration.Comment: 7 pages, 5 figure
- …