28,040 research outputs found

    The noncommutative harmonic oscillator in more than one dimensions

    Get PDF
    The noncommutative harmonic oscillator in arbitrary dimension is examined. It is shown that the \star-genvalue problem can be decomposed into separate harmonic oscillator equations for each dimension. The noncommutative plane is investigated in greater detail. The constraints for rotationally symmetric solutions and the corresponding two-dimensional harmonic oscillator are solved. The angular momentum operator is derived and its \star-genvalue problem is shown to be equivalent to the usual eigenvalue problem. The \star-genvalues for the angular momentum are found to depend on the energy difference of the oscillations in each dimension. Furthermore two examples of assymetric noncommutative harmonic oscillator are analysed. The first is the noncommutative two-dimensional Landau problem and the second is the three-dimensional harmonic oscillator with symmetrically noncommuting coordinates and momenta.Comment: 12 page

    Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi_2Se_3 with scanning tunneling spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Bi_2Se_3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between the Fermi level (E_F) and the Dirac point (E_D) and diverges as E_F approaches E_D. The Dirac-cone surface state of the host recovers within ~ 2Å spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-density impurities that preserve time reversal symmetry

    Statistical Modelling of Extreme Rainfall in Taiwan

    Get PDF
    In this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model. The non-stationary model means that the parameter of location of the GEV distribution is formulated as linear and quadratic functions of time to detect temporal trends in the maximum rainfall. Future behavior refers to the return level and the return period of the extreme rainfall. The 10, 20, 50 and 100-years return levels and their 95% confidence intervals of the return levels stationary models are provided. The return period is calculated based on the record-high (ranked 1st) extreme rainfall brought by the top 10 typhoons for each station in Taiwan. The estimates show that non-stationary model with increasing trend is suitable for the Kaohsiung, Hengchun, Taitung and Dawu stations. The Kaohsing and Hengchun stations have greater trends than the other two stations, showing that the positive trend extreme rainfall in the southern region is greater than in the eastern region of Taiwan. In addition, the Keelung, Anbu, Zhuzihu, Tamsui, Yilan, Taipei, Hsinchu, Taichung, Alishan, Yushan and Tainan stations are fitted well with the Gumbel distribution, while the Sun Moon Lake, Hualien and Chenggong stations are fitted well with the GEV distributio

    Charge dynamics of the spin-density-wave state in BaFe2_2As2_2

    Full text link
    We report on a thorough optical investigation of BaFe2_2As2_2 over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at TSDW=135T_{SDW}=135 K. While BaFe2_2As2_2 remains metallic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below TSDWT_{SDW}, ascribed to the formation of a pseudogap-like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the dcdc transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition

    Scalable Parallel Numerical CSP Solver

    Full text link
    We present a parallel solver for numerical constraint satisfaction problems (NCSPs) that can scale on a number of cores. Our proposed method runs worker solvers on the available cores and simultaneously the workers cooperate for the search space distribution and balancing. In the experiments, we attained up to 119-fold speedup using 256 cores of a parallel computer.Comment: The final publication is available at Springe

    Anisotropic charge dynamics in detwinned Ba(Fe1x_{1-x}Cox_x)2_2As2_2

    Full text link
    We investigate the optical conductivity as a function of temperature with light polarized along the in-plane orthorhombic aa- and bb-axes of Ba(Fe1x_{1-x}Cox_x)2_2As2_2 for xx=0 and 2.5%\% under uniaxial pressure. The charge dynamics at low frequencies on these detwinned, single domain compounds tracks the anisotropic dcdc transport properties across their structural and magnetic phase transitions. Our findings allow us to estimate the dichroism, which extends to relatively high frequencies. These results are consistent with a scenario in which orbital order plays a significant role in the tetragonal-to-orthorhombic structural transition

    Symplectic Quantization of Open Strings and Noncommutativity in Branes

    Full text link
    We show how to translate boundary conditions into constraints in the symplectic quantization method by an appropriate choice of generalized variables. This way the symplectic quantization of an open string attached to a brane in the presence of an antisymmetric background field reproduces the non commutativity of the brane coordinates.Comment: We included a comparison with previous results obtained from Dirac quantization, emphasizing the fact that in the symplectic case the boundary conditions, that lead to the non commutativity, show up from the direct application of the standard method. Version to appear in Phys. Rev.

    Incommensurate Magnetic Order in TbTe3_3

    Full text link
    We report a neutron diffraction study of the magnetic phase transitions in the charge-density-wave (CDW) TbTe3_3 compound. We discover that in the paramagnetic phase there are strong 2D-like magnetic correlations, consistent with the pronounced anisotropy of the chemical structure. A long-range incommensurate magnetic order emerges in TbTe3_3 at Tmag1T_{mag1} = 5.78 K as a result of continuous phase transitions. We observe that near the temperature Tmag1T_{mag1} the magnetic Bragg peaks appear around the position (0,0,0.24) (or its rational multiples), that is fairly close to the propagation vector (0,0,0.29)(0,0,0.29) associated with the CDW phase transition in TbTe3_3. This suggests that correlations leading to the long-range magnetic order in TbTe3_3 are linked to the modulations that occur in the CDW state
    corecore