21,472 research outputs found

    Detection of an X-ray Pulsar Wind Nebula and Tail in SNR N157B

    Get PDF
    We report Chandra X-ray observations of the supernova remnant N157B in the Large Magellanic Cloud, which are presented together with an archival HST optical image and a radio continuum map for comparison. This remnant contains the recently discovered 16 ms X-ray pulsar PSR J0537-6910, the most rapidly rotating young pulsar known. Using phase-resolved Chandra imaging, we pinpoint the location of the pulsar to within an uncertainty of less than 1 arcsec. PSR J0537-6910 is not detected in any other wavelength band. The X-ray observations resolve three distinct features: the pulsar itself, a surrounding compact wind nebula which is strongly elongated and a feature of large-scale diffuse emission trailing from the pulsar. This latter comet tail-shaped feature coexists with enhanced radio emission and is oriented nearly perpendicular to the major axis of the pulsar wind nebula. We propose the following scenario to explain these features. The bright, compact nebula is likely powered by a toroidal pulsar wind of relativistic particles which is partially confined by the ram-pressure from the supersonic motion of the pulsar. The particles, after being forced out from the compact nebula (the head of the ``comet''), are eventually dumped into a bubble (the tail), which is primarily responsible for the extended diffuse X-ray and radio emission. The ram-pressure confinement also allows a natural explanation for the observed X-ray luminosity of the compact nebula and for the unusually small X-ray to spin-down luminosity ratio, compared to similarly energetic pulsars. We estimate the pulsar wind Lorentz factor of N157B as about 4 times 10^6 (with an uncertainty of a factor about 2, consistent with that inferred from the modeling of the Crab Nebula.Comment: 15 pages plus 4 figures. The postscript file of the whole paper is available at http://xray.astro.umass.edu/wqd/papers/n157b/n157b.ps. accepted for publication in Ap

    Bubbles and Superbubbles

    Full text link
    An isolated massive star can blow a bubble, while a group of massive stars can blow superbubbles. In this paper, we examine three intriguing questions regarding bubbles and superbubbles: (1) why don't we see interstellar bubbles around every O star? (2) how hot are the bubble interiors? and (3) what is going on at the hot/cold gas interface in a bubble?Comment: 8 page, 5 figures, to appear in the proceedings of "How does the Galaxy work? A Galactic Tertulia with Don Cox and Ron Reynolds", eds Alfaro, Perez & Franc

    Vortex avalanches and self organized criticality in superconducting niobium

    Full text link
    In 1993 Tang proposed [1] that vortex avalanches should produce a self organized critical state in superconductors, but conclusive evidence for this has heretofore been lacking. In the present paper, we report extensive micro-Hall probe data from the vortex dynamics in superconducting niobium, where a broad distribution of avalanche sizes scaling as a power-law for more than two decades is found. The measurements are combined with magneto-optical imaging, and show that over a widely varying magnetic landscape the scaling behaviour does not change, hence establishing that the dynamics of superconducting vortices is a SOC phenomenon.Comment: 3 pages + 4 figures, a reference added, citation typos fixe

    Unusual Field-Dependence of the Intragrain Superconductive Transition in RuSr2EuCu2O8

    Full text link
    A narrow intragrain phase-lock transition was observed in RuSr2EuCu2O8 under a magnetic field H up to a few Tesla. The corresponding transition temperature, T2, decreases rapidly (about 100 K/T at low fields) with H indicating that the grains of RuSr2EuCu2O8 behave like a Josephson-junction-array instead of a homogeneous bulk superconductor. Our data suggest that the bulk superconducting transition may occur on a length scale well below the grain size of 2 to 6 micrometer

    Probing the role of single defects on the thermodynamics of electric-field induced phase transitions

    Full text link
    The kinetics and thermodynamics of first order transitions is universally controlled by defects that act as nucleation sites and pinning centers. Here we demonstrate that defect-domain interactions during polarization reversal processes in ferroelectric materials result in a pronounced fine structure in electromechanical hysteresis loops. Spatially-resolved imaging of a single defect center in multiferroic BiFeO3 thin film is achieved, and the defect size and built-in field are determined self-consistently from the single-point spectroscopic measurements and spatially-resolved images. This methodology is universal and can be applied to other reversible bias-induced transitions including electrochemical reactions.Comment: 34 pages,4 figures, high quality figures are available upon request, submitted to Phys. Rev. Let
    • 

    corecore