27,191 research outputs found

    Improving Effective Surgical Delivery in Humanitarian Disasters: Lessons from Haiti

    Get PDF
    Kathryn Chu and colleagues describe the experiences of Médecins sans Frontières after the 2010 Haiti earthquake, and discuss how to improve delivery of surgery in humanitarian disasters

    Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates

    Full text link
    We show that the quantum fluctuations associated with the Bogoliubov quasiparticle vacuum can be strongly concentrated inside dark solitons in a trapped Bose Einstein condensate. We identify a finite number of anomalous modes that are responsible for such quantum phenomena. The fluctuations in these anomalous modes correspond to the `zero-point' oscillations in coupled dark solitons.Comment: 4 pages, 3 figure

    Nanoscale Defect Formation on InP(111) Surfaces after MeV Sb Implantation

    Full text link
    We have studied the surface modifications as well as the surface roughness of the InP(111) surfaces after 1.5 MeV Sb ion implantations. Scanning Probe Microscope (SPM) has been utilized to investigate the ion implanted InP(111) surfaces. We observe the formation of nanoscale defect structures on the InP surface. The density, height and size of the nanostructures have been investigated here as a function of ion fluence. The rms surface roughness, of the ion implanted InP surfaces, demonstrates two varied behaviors as a function of Sb ion fluence. Initially, the roughness increases with increasing fluence. However, after a critical fluence the roughness decreases with increasing fluence. We have further applied the technique of Raman scattering to investigate the implantation induced modifications and disorder in InP. Raman Scattering results demonstrate that at the critical fluence, where the decrease in surface roughness occurs, InP lattice becomes amorphous.Comment: 18 pages, 9 figure

    Engineering entanglement for metrology with rotating matter waves

    Get PDF
    Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation

    Physical Structure of Small Wolf-Rayet Ring Nebulae

    Get PDF
    We have selected the seven most well-defined WR ring nebulae in the LMC (Br 2, Br 10, Br 13, Br 40a, Br 48, Br 52, and Br 100) to study their physical nature and evolutionary stages. New CCD imaging and echelle observations have been obtained for five of these nebulae; previous photographic imaging and echelle observations are available for the remaining two nebulae. Using the nebular dynamics and abundances, we find that the Br 13 nebula is a circumstellar bubble, and that the Br 2 nebula may represent a circumstellar bubble merging with a fossil main-sequence interstellar bubble. The nebulae around Br 10, Br 52, and Br 100 all show influence of the ambient interstellar medium. Their regular expansion patterns suggest that they still contain significant amounts of circumstellar material. Their nebular abundances would be extremely interesting, as their central stars are WC5 and WN3-4 stars whose nebular abundances have not been derived previously. Intriguing and tantalizing implications are obtained from comparisons of the LMC WR ring nebulae with ring nebulae around Galactic WR stars, Galactic LBVs, LMC LBVs, and LMC BSGs; however, these implications may be limited by small-number statistics. A SNR candidate close to Br 2 is diagnosed by its large expansion velocity and nonthermal radio emission. There is no indication that Br 2's ring nebula interacts dynamically with this SNR candidate.Comment: 20 pages, Latex (aaspp4.sty), 2 figures, accepted by the Astronomical Journal (March 99 issue

    Hafnium-based High-k Gate Dielectrics

    Get PDF

    Cooling of a New Born Compact Star with QCD Phase Transition

    Full text link
    We study the cooling behaviour of an isolated strange quark star, using an equation of state derived from perturbative QCD up to second order in strong coupling constant, and we compare it with that of a neutron star. After an initial rapid cooling, a quark star may undergo the QCD phase transition to become a neutron star. We propose several signatures for such a scenario: a large amount of energy can be released due to latent heat, a long duration Îł\gamma-ray source, and a second neutrino burst after a supernova explosion.Comment: 12 pages, 11 figures, 4 tables. Deleted a section related to static structure.Very minor updated the results without changing the conclusions.This is the final submitted version after all the proof read processe

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Co-axial dual-core resonant leaky fibre for optical amplifiers

    Get PDF
    We present a co-axial dual-core resonant leaky optical fibre design, in which the outer core is made highly leaky. A suitable choice of parameters can enable us to resonantly couple power from the inner core to the outer core. In a large-core fibre, such a resonant coupling can considerably increase the differential leakage loss between the fundamental and the higher order modes and can result in effective single-mode operation. In a small-core single-mode fibre, such a coupling can lead to sharp increase in the wavelength dependent leakage loss near the resonant wavelength and can be utilized for the suppression of amplified spontaneous emission and thereby gain equalization of an optical amplifier. We study the propagation characteristics of the fibre using the transfer matrix method and present an example of each, the large-mode-area design for high power amplifiers and the wavelength tunable leakage loss design for inherent gain equalization of optical amplifiers.Comment: 6 page

    Energy focusing inside a dynamical cavity

    Get PDF
    We study the exact classical solutions for a real scalar field inside a cavity with a wall whose motion is self-consistently determined by the pressure of the field itself. We find that, regardless of the system parameters, the long-time solution always becomes nonadiabatic and the field's energy concentrates into narrow peaks, which we explain by means of a simple mechanical system. We point out implications for the quantized theory.Comment: 5 pages, 6 figures, double column, submitted to P.R.
    • …
    corecore