5 research outputs found

    Study on the mixing performance of static mixers in selective catalytic reduction (SCR) systems

    Get PDF
    Selective catalytic reduction (SCR) is a promising technique for reducing nitrogen oxide (NOx) emissions from diesel engines. Static mixers are widely used in SCR systems before reactors to promote the mixing of ammonia and exhaust streams. This work aims to investigate the effects of the location of static mixers and the volume ratio of two species on mixing quality using the computational fluid dynamics (CFD) method. The simulation results show that a more homogenous ammonia distribution can be achieved at the exit of the pipe if static mixers are placed close to the ammonia injection point or if more ammonia is injected. Another phenomenon found in the study is that the mixing performance of an identical static mixer may behave discrepantly under different flow conditions if using B and C as the evaluating indexes for mixing homogenization

    Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing

    Get PDF
    The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.Peer reviewe

    Nanomaterials with dual immunomodulatory functions for synergistic therapy of breast cancer brain metastases

    No full text
    A long-standing paucity of effective therapies results in the poor outcomes of triple-negative breast cancer brain metastases. Immunotherapy has made progress in the treatment of tumors, but limited by the non-immunogenicity of tumors and strong immunosuppressive environment, patients with TNBC brain metastases have not yet benefited from immunotherapy. Dual immunoregulatory strategies with enhanced immune activation and reversal of the immunosuppressive microenvironment provide new therapeutic options for patients. Here, we propose a cocktail-like therapeutic strategy of microenvironment regulation-chemotherapy-immune synergistic sensitization and construct reduction-sensitive immune microenvironment regulation nanomaterials (SIL@T). SIL@T modified with targeting peptide penetrates the BBB and is subsequently internalized into metastatic breast cancer cells, releasing silybin and oxaliplatin responsively in the cells. SIL@T preferentially accumulates at the metastatic site and can significantly prolong the survival period of model animals. Mechanistic studies have shown that SIL@T can effectively induce immunogenic cell death of metastatic cells, activate immune responses and increase infiltration of CD8+ T cells. Meanwhile, the activation of STAT3 in the metastatic foci is attenuated and the immunosuppressive microenvironment is reversed. This study demonstrates that SIL@T with dual immunomodulatory functions provides a promising immune synergistic therapy strategy for breast cancer brain metastases

    Finite-State Text Processing

    No full text
    corecore