6 research outputs found

    FPGA-based Degradation Evaluation for Traction Power Module with Deep Recurrent Autoencoder

    Get PDF
    The timely and quantitative evaluation of the degradation is crucial for traction inverter systems in railway applications. The implementation in the industry is impeded by two major challenges including the varying operational profiles and the scalability for system-level applications. This paper proposes a deep recurrent autoencoder-based degradation evaluation method, to assess the degradation level of the traction power module online. The recurrent structure is embedded for processing multivariate time series condition monitoring data stream, in order to exploit the inherent time dependence to improve the accuracy and robustness. The autoencoder-based framework enables the scalability of the proposed method to system-level applications and can be applied under varying operating conditions. The method is experimentally demonstrated on an FPGA-based hardware platform.</p

    Parasitic Effect Compensation Method for IGBT ON-State Voltage Measurement in Traction Inverter Application

    Get PDF

    A Multiview Representation Learning Framework for Large-Scale Urban Road Networks

    No full text
    Methods to learn informative representations of road networks constitute an important prerequisite to solve multiple traffic analysis tasks with data-driven models. Most existing studies are only developed from a topology structure or traffic attribute perspective, and the resulting representations are biased and cannot fully capture the complex traffic flow patterns that are attributed to human mobility in road networks. Moreover, real-world road networks usually contain millions of segments, which poses a great challenge regarding the memory usage and computational efficiency of existing methods. Consequently, we proposed a novel multiview representation learning framework for large-scale urban road networks to simultaneously preserve topological and human mobility information. First, the road network was modeled as a multigraph, and a multiview random walk method was developed to capture the structure function of the road network from a topology-aware graph and vehicle transfer pattern from a mobility-aware graph. In this process, a large-scale road network organization method was established to improve the random walk algorithm efficiency. Finally, word2vec was applied to learn representations based on sequences that were generated by the multiview random walk. In the experiment, two real-world datasets were used to demonstrate the superior performance of our framework through a comparative analysis

    Chinese expert consensus on the diagnosis and treatment of malignant pleural mesothelioma

    No full text
    Abstract Malignant pleural mesothelioma (MPM) is a malignant tumor originating from the pleura, and its incidence has been increasing in recent years. Due to the insidious onset and strong local invasiveness of MPM, most patients are diagnosed in the late stage and early screening and treatment for high‐risk populations are crucial. The treatment of MPM mainly includes surgery, chemotherapy, and radiotherapy. Immunotherapy and electric field therapy have also been applied, leading to further improvements in patient survival. The Mesothelioma Group of the Yangtze River Delta Lung Cancer Cooperation Group (East China LUng caNcer Group, ECLUNG; Youth Committee) developed a national consensus on the clinical diagnosis and treatment of MPM based on existing clinical research evidence and the opinions of national experts. This consensus aims to promote the homogenization and standardization of MPM diagnosis and treatment in China, covering epidemiology, diagnosis, treatment, and follow‐up
    corecore