19 research outputs found

    Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    Get PDF
    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {1011}. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a facecentered- cubic stacking, to serve as a nucleus of stacking fault. On a {1011}, clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {1011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism

    Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Toxoplasma gondii Macrophage Migration Inhibitory Factor

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite responsible for toxoplasmosis, which can cause severe disease in the fetus and immunocompromised individuals. Developing an effective vaccine is crucial to control this disease. Macrophage migration inhibitory factor (MIF) has gained substantial attention as a pivotal upstream cytokine to mediate innate and adaptive immune responses. Homologs of MIF have been discovered in many parasitic species, and one homolog of MIF has been isolated from the parasite Toxoplasma gondii. In this study, the recombinant Toxoplasma gondii MIF (rTgMIF) as a protein vaccine was expressed and evaluated by intramuscular injection in BALB/c mice. We divided the mice into different dose groups of vaccines, and all immunizations with purified rTgMIF protein were performed at 0, 2, and 4 weeks. The protective efficacy of vaccination was analyzed by antibody assays, cytokine measurements and lymphoproliferative assays, respectively. The results obtained indicated that the rTgMIF vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody and IFN-γ production compared to those of the controls, in addition to slight higher levels of IL-4 production. After vaccination, a stronger lymphoproliferative response was also noted. Additionally, the survival time of mice immunized with rTgMIF was longer than that of the mice in control groups after challenge infection with virulent T. gondii RH tachyzoites. Moreover, the number of brain tissue cysts in vaccinated mice was reduced by 62.26% compared with the control group. These findings demonstrated that recombinant TgMIF protein is a potential candidate for vaccine development against toxoplasmosis

    Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    Get PDF
    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {1011}. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a facecentered- cubic stacking, to serve as a nucleus of stacking fault. On a {1011}, clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {1011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism

    Anomalous shape effect of nanosized helium bubble on the elastic field in irradiated tungsten

    No full text
    Abstract Bubble pressure and elastic response in helium-irradiated tungsten are systematically investigated in this study. An anomalous shape effect is found that the radial normal stress and mean stress distributions around a nanosized void or bubble are far from the spherical symmetry, which is ascribed to polyhedral geometry characteristic of the nanosized bubble and physical mechanism transition from crystal surfaces dominated to the surface ledges and triple junctions dominated. Molecular simulation shows that Young–Laplace equation is not suitable for directly predicting equilibrium pressure for nanosized bubble in crystals. Consequently, a new criterion of average radial normal stress of spherical shell is proposed to polish the concept of equilibrium pressure of helium bubbles. Moreover, the dependences of bubble size, temperature and helium/vacancy ratio (He/Vac ratio) on the bubble pressure are all documented, which may provide an insight into the understanding of mechanical properties of helium-irradiated tungsten

    Self-Energy of Elliptical Dislocation Loops in Anisotropic Crystals and its Application for Defect-Free Core/Shell Nanowires

    No full text
    In this work we investigate the self-energy of elliptical dislocation loops in anisotropic crystals and determine the functional dependencies on loop circumference, shape, and dislocation core radius. Systematic numerical calculations using the anisotropic point force Green\u27s function method are carried out with the goal of developing an analytical expression for the self-energy associated with these loops. The resulting formula is shown to accurately predict the self-energies for elliptical loops in anisotropic crystals, as well as the self-energies for simple loop configurations in isotropic crystals, for which analytical expressions exist. We apply this expression to predict the critical shell thickness corresponding to defect-free core/shell nanowires (NW) and further for the first time consider the effect of image energy due to the finite size of NW in anisotropic media using the boundary element method. Consequently, self-energy in NWs is corrected by an energy factor. Moreover, we discuss the dependence of the critical shell thickness on growth direction, with 〈1 1 0〉 NW having the largest, 〈1 1 1〉 NW the next largest, and 〈1 1 2〉 NW the finest

    An Analytical Model for the Critical Shell Thickness in Core/Shell Nanowires Based on Crystallographic Slip

    No full text
    Employing crystal plasticity theory and micromechanics inclusion theory, we developed a full-strain relaxation model under isotropic assumption of materials properties to predict the dependence of the critical shell thickness (CST) for defect-free core/shell nanowires (NWs) on their growth direction. Unlike prior models, we consider three important factors in the energetic analysis (1) the self-energy of a dislocation loop in a finite domain, (2) the three-dimensional mismatch strains that develop in core/shell NWs (axial, radial and tangential directions) as a result of the finite NW geometry and the lattice mismatch between the core and shell materials, and (3) the three-dimensional plastic strains from misfit dislocations that nucleate to relax the mismatch strains. With these, the full-relaxation model is able to reveal that (i) the variation of the CST with growth direction depends on the core radius, (ii) misfit dislocations will not nucleate when the core radius falls below a critical value, (iii) the CST tends to a constant as the core radius increases, and (iv) the CST predicted by prior uniaxial-strain relaxation models is a lower bound

    Misfit Strain Relaxation Mechanisms in Core/Shell Nanowires

    No full text
    In the past decade, core/shell nanowires (NWs) have attracted much attention due to the broad variety of potential applications of these structures in future nanoelectronic and nanophotonic devices. Because of the lattice mismatch between the core and shell materials, crystal dislocations often form to relax the mismatch strains. In this article, we propose a relaxation mechanism for the misfit strains generated in the core/shell NWs, in which lattice dislocations nucleate from the outer surfaces and then propagate to the core/shell interface. An analytical model is developed to predict the critical shell thickness corresponding to defect-free core/shell NWs with respect to the growth direction
    corecore