31,027 research outputs found

    XMM-Newton Detection of Hot Gas in the Eskimo Nebula: Shocked Stellar Wind or Collimated Outflows?

    Full text link
    The Eskimo Nebula (NGC 2392) is a double-shell planetary nebula (PN) known for the exceptionally large expansion velocity of its inner shell, ~90 km/s, and the existence of a fast bipolar outflow with a line-of-sight expansion velocity approaching 200 km/s. We have obtained XMM-Newton observations of the Eskimo and detected diffuse X-ray emission within its inner shell. The X-ray spectra suggest thin plasma emission with a temperature of ~2x10^6 K and an X-ray luminosity of L_X = (2.6+/-1.0)x10^31 (d/1150 pc)^2 ergs/s, where d is the distance in parsecs. The diffuse X-ray emission shows noticeably different spatial distributions between the 0.2-0.65 keV and 0.65-2.0 keV bands. High-resolution X-ray images of the Eskimo are needed to determine whether its diffuse X-ray emission originates from shocked fast wind or bipolar outflows.Comment: 4 pages, 2 figures, accepted in Astronomy and Astrophysics Letter

    Water Content and Superconductivity in Na0.3CoO2*yH2O

    Full text link
    We report here the correlation between the water content and superconductivity in Na0.3CoO2*yH2O under the influences of elevated temperature and cold compression. The x-ray diffraction of the sample annealed at elevated temperatures indicates that intergrowths exist in the compound at equilibrium when 0.6 < y < 1.4. Its low-temperature diamagnetization varies linearly with y, but is insensitive to the intergrowth, indicative of quasi-2D superconductivity. The Tc-onset, especially, shifts only slightly with y. Our data from cold compressed samples, on the other hand, show that the water-loss non-proportionally suppresses the diamagnetization, which is suggestive of weak links.Comment: 10 pages, 10 figures; submitted to Physica C (August 13, 2003

    A sputtering derived atomic oxygen source for studying fast atom reactions

    Get PDF
    A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy
    corecore