1,310 research outputs found
Evaporative cooling of trapped fermionic atoms
We propose an efficient mechanism for the evaporative cooling of trapped
fermions directly into quantum degeneracy. Our idea is based on an electric
field induced elastic interaction between trapped atoms in spin symmetric
states. We discuss some novel general features of fermionic evaporative cooling
and present numerical studies demonstrating the feasibility for the cooling of
alkali metal fermionic species Li, K, and Rb. We also
discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including
the effects of anisotropic interactions.Comment: to be publishe
Generation and Evolution of Spin Entanglement in NRQED
A complete analysis on the generation of spin entanglement from NRQED is
presented. The results of entanglement are obtained with relativistic
correction to the leading order of (v/c)^2. It is shown that to this order the
degree of entanglement of a singlet state does not change under time evolution
whereas the triplet state can change.Comment: 8 pages, 1 figure, to appear in Phys. Rev.
A Pair of Disjoint 3-GDDs of type g^t u^1
Pairwise disjoint 3-GDDs can be used to construct some optimal
constant-weight codes. We study the existence of a pair of disjoint 3-GDDs of
type and establish that its necessary conditions are also sufficient.Comment: Designs, Codes and Cryptography (to appear
Rotational master equation for cold laser-driven molecules
The equations of motion for the molecular rotation are derived for
vibrationally cold dimers that are polarized by off-resonant laser light. It is
shown that, by eliminating electronic and vibrational degrees of freedom, a
quantum master equation for the reduced rotational density operator can be
obtained. The coherent rotational dynamics is caused by stimulated Raman
transitions, whereas spontaneous Raman transitions lead to decoherence in the
motion of the quantized angular momentum. As an example the molecular dynamics
for the optical Kerr effect is chosen, revealing decoherence and heating of the
molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities
We study the mutual interaction of a Bose-Einstein condensed gas with a
single mode of a high-finesse optical cavity. We show how the cavity
transmission reflects condensate properties and calculate the self-consistent
intra-cavity light field and condensate evolution. Solving the coupled
condensate-cavity equations we find that while falling through the cavity, the
condensate is adiabatically transfered into the ground state of the periodic
optical potential. This allows time dependent non-destructive measurements on
Bose-Einstein condensates with intriguing prospects for subsequent controlled
manipulation.Comment: 5 pages, 5 figures; revised version: added reference
Topological Defects and Non-homogeneous Melting of Large 2D Coulomb Clusters
The configurational and melting properties of large two-dimensional clusters
of charged classical particles interacting with each other via the Coulomb
potential are investigated through the Monte Carlo simulation technique. The
particles are confined by a harmonic potential. For a large number of particles
in the cluster (N>150) the configuration is determined by two competing
effects, namely in the center a hexagonal lattice is formed, which is the
groundstate for an infinite 2D system, and the confinement which imposes its
circular symmetry on the outer edge. As a result a hexagonal Wigner lattice is
formed in the central area while at the border of the cluster the particles are
arranged in rings. In the transition region defects appear as dislocations and
disclinations at the six corners of the hexagonal-shaped inner domain. Many
different arrangements and type of defects are possible as metastable
configurations with a slightly higher energy. The particles motion is found to
be strongly related to the topological structure. Our results clearly show that
the melting of the clusters starts near the geometry induced defects, and that
three different melting temperatures can be defined corresponding to the
melting of different regions in the cluster.Comment: 7 pages, 11 figures, submitted to Phys. Rev.
An Alternative Method to Deduce Bubble Dynamics in Single Bubble Sonoluminescence Experiments
In this paper we present an experimental approach that allows to deduce the
important dynamical parameters of single sonoluminescing bubbles (pressure
amplitude, ambient radius, radius-time curve) The technique is based on a few
previously confirmed theoretical assumptions and requires the knowledge of
quantities such as the amplitude of the electric excitation and the phase of
the flashes in the acoustic period. These quantities are easily measurable by a
digital oscilloscope, avoiding the cost of expensive lasers, or ultrafast
cameras of previous methods. We show the technique on a particular example and
compare the results with conventional Mie scattering. We find that within the
experimental uncertainties these two techniques provide similar results.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
- …
