36 research outputs found
Supercurrents through gated superconductor-normal-metal-superconductor contacts: the Josephson-transistor
We analyze the transport through a narrow ballistic superconductor-normal-
metal-superconductor Josephson contact with non-ideal transmission at the
superconductor-normal-metal interfaces, e.g., due to insulating layers,
effective mass steps, or band misfits (SIN interfaces). The electronic spectrum
in the normal wire is determined through the combination of Andreev- and normal
reflection at the SIN interfaces. Strong normal scattering at the SIN
interfaces introduces electron- and hole-like resonances in the normal region
which show up in the quasi-particle spectrum. These resonances have strong
implications for the critical supercurrent which we find to be determined
by the lowest quasi-particle level: tuning the potential to the
points where electron- and hole-like resonances cross, we find sharp peaks in
, resulting in a transitor effect. We compare the performance of
this Resonant Josephson-Transistor (RJT) with that of a Superconducting Single
Electron Transistor (SSET).Comment: to appear in PRB, 11 pages, 9 figure
Andreev conductance of a domain wall
At low temperatures, the transport through a superconductor-ferromagnet
tunnel interface is due to tunneling of electrons in pairs. Exchange field of a
monodomain ferromagnet aligns electron spins and suppresses the two electron
tunneling. The presence of the domain walls at the SF interface strongly
enhances the subgap current. The Andreev conductance is proven to be
proportional to the total length of domain walls at the SF interface.Comment: 4 pages and 1 figur
Cluster model of glass transition in simple liquids
On the basis of microscopic statistical mechanics of simple liquids the
orientational interaction between clusters consisting of a particle and its
nearest neighbors is estimated. It is shown that there are ranges of density
and temperature where the interaction changes sign as a function of a radius of
a cluster. The model of interacting cubic and icosahedral clusters is proposed
and solved in mean-field replica symmetric approximation. It is shown that the
glass order parameter grows smoothly upon cooling, the transition temperature
being identified with the temperature of the replica symmetry breaking. It is
shown that upon cooling a Lennard-Jones system, cubic clusters freeze first.
The transition temperature for icosahedral clusters is about ten per cent
lower. So the local structure of Lennard-Jones glass in the vicinity of glass
transition should be most probably cubic.Comment: 4 pages, 3 figure
Entanglement in Mesoscopic Structures: Role of Projection
We present a theoretical analysis of the appearance of entanglement in
non-interacting mesoscopic structures. Our setup involves two oppositely
polarized sources injecting electrons of opposite spin into the two incoming
leads. The mixing of these polarized streams in an ideal four-channel beam
splitter produces two outgoing streams with particular tunable correlations. A
Bell inequality test involving cross-correlated spin-currents in opposite leads
signals the presence of spin-entanglement between particles propagating in
different leads. We identify the role of fermionic statistics and projective
measurement in the generation of these spin-entangled electrons.Comment: 5 pages, 1 figur
Manifestation of triplet superconductivity in superconductor-ferromagnet structures
We study proximity effects in a multilayered superconductor/ferromagnet (S/F)
structure with arbitrary relative directions of the magnetization . If
the magnetizations of different layers are collinear the superconducting
condensate function induced in the F layers has only a singlet component and a
triplet one with a zero projection of the total magnetic moment of the Cooper
pairs on the direction. In this case the condensate penetrates the F
layers over a short length determined by the exchange energy . If
the magnetizations are not collinear the triplet component has, in
addition to the zero projection, the projections . The latter component
is even in the momentum, odd in the Matsubara frequency and penetrates the F
layers over a long distance that increases with decreasing temperature and does
not depend on (spin-orbit interaction limits this length). If the thickness
of the F layers is much larger than , the Josephson coupling between
neighboring S layers is provided only by the triplet component, so that a new
type of superconductivity arises in the transverse direction of the structure.
The Josephson critical current is positive (negative) for the case of a
positive (negative) chirality of the vector . We demonstrate that this
type of the triplet condensate can be detected also by measuring the density of
states in F/S/F structures.Comment: 14 pages; 9 figures. Final version, to be published in Phys. Rev.
Josephson Current in S-FIF-S Junctions: Nonmonotonic Dependence on Misorientation Angle
Spectra and spin structures of Andreev interface states in S-FIF-S junctions
are investigated with emphasis on finite transparency and misorientation angle
between in-plane magnetizations of ferromagnetic layers in a three-layer
interface. It is demonstrated that the Josephson current in S-FIF-S quantum
point contacts can exhibit a nonmonotonic dependence on the misorientation
angle. The characteristic behavior takes place, if the pi-state is the
equilibrium state of the junction in the particular case of parallel
magnetizations.Comment: 5 pages, 4 figure
Production and detection of three-qubit entanglement in the Fermi sea
Building on a previous proposal for the entanglement of electron-hole pairs
in the Fermi sea, we show how 3 qubits can be entangled without using
electron-electron interactions. As in the 2-qubit case, this electronic scheme
works even if the sources are in (local) thermal equilibrium -- in contrast to
the photonic analogue. The 3 qubits are represented by 4 edge-channel
excitations in the quantum Hall effect (2 hole excitations plus 2 electron
excitations with identical channel index). The entangler consists of an
adiabatic point contact flanked by a pair of tunneling point contacts. The
irreducible 3-qubit entanglement is characterized by the tangle, which is
expressed in terms of the transmission matrices of the tunneling point
contacts. The maximally entangled Greenberger-Horne-Zeilinger (GHZ) state is
obtained for channel-independent tunnel probabilities. We show how
low-frequency noise measurements can be used to determine an upper and lower
bound to the tangle. The bounds become tighter the closer the electron-hole
state is to the GHZ state.Comment: 8 pages including 4 figures; [2017: fixed broken postscript figures
Spontaneous Spin Polarized Currents in Superconductor-Ferromagnetic Metal Heterostructures
We study a simple microscopic model for thin, ferromagnetic, metallic layers
on semi-infinite bulk superconductor. We find that for certain values of the
exchange spliting, on the ferromagnetic side, the ground states of such
structures feature spontaneously induced spin polarized currents. Using a
mean-field theory, which is selfconsistent with respect to the pairing
amplitude , spin polarization and the spontaneous current
, we show that not only there are Andreev bound states in the
ferromagnet but when their energies are near zero they support
spontaneous currents parallel to the ferromagnetic-superconducting interface.
Moreover, we demonstrate that the spin-polarization of these currents depends
sensitively on the band filling.Comment: 4 pages, 5 Postscript figures (included
Layered ferromagnet-superconductor structures: the state and proximity effects
We investigate clean mutilayered structures of the SFS and SFSFS type, (where
the S layer is intrinsically superconducting and the F layer is ferromagnetic)
through numerical solution of the self-consistent Bogoliubov-de Gennes
equations for these systems. We obtain results for the pair amplitude, the
local density of states, and the local magnetic moment. We find that as a
function of the thickness of the magnetic layers separating adjacent
superconductors, the ground state energy varies periodically between two stable
states. The first state is an ordinary "0-state", in which the order parameter
has a phase difference of zero between consecutive S layers, and the second is
a "-state", where the sign alternates, corresponding to a phase difference
of between adjacent S layers. This behavior can be understood from simple
arguments. The density of states and the local magnetic moment reflect also
this periodicity.Comment: 12 pages, 10 Figure
Clauser-Horne inequality for electron counting statistics in multiterminal mesoscopic conductors
In this paper we derive the Clauser-Horne (CH) inequality for the full
electron counting statistics in a mesoscopic multiterminal conductor and we
discuss its properties. We first consider the idealized situation in which a
flux of entangled electrons is generated by an entangler. Given a certain
average number of incoming entangled electrons, the CH inequality can be
evaluated for different numbers of transmitted particles. Strong violations
occur when the number of transmitted charges on the two terminals is the same
(), whereas no violation is found for . We then consider
two actual setups that can be realized experimentally. The first one consists
of a three terminal normal beam splitter and the second one of a hybrid
superconducting structure. Interestingly, we find that the CH inequality is
violated for the three terminal normal device. The maximum violation scales as
1/M and for the entangler and normal beam splitter, respectively, 2
being the average number of injected electrons. As expected, we find full
violation of the CH inequality in the case of the superconducting system.Comment: 26 pages, 9 figures. Ref. adde