253 research outputs found

    Synergy for a Strong Future FY 2008

    Get PDF
    Lawrence Livermore National Security, LLC is committed to delivering the best combination of scientific research, technology development, business management, and safe, secure operations in support of Lawrence Livermore National Laboratory's critical national security mission. LLNS was formed specifically to manage LLNL for the Department of Energy's National Nuclear Security Administration. LLNS consists of a team of five organizations renowned for their expertise and accomplishments throughout the U.S. nuclear weapons complex and beyond - Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle. Bechtel is the nation's largest engineering and construction firm and a leader in project management. The University of California is the world's largest public research institution. Babcock & Wilcox and the Washington Division of URS Corporation are top nuclear facilities contractors and between them manage four of DOE's five safest sites. Battelle is a global leader in science and technology development and commercialization. The LLNS Board of Governors provides oversight for the management of the Laboratory and holds the Director and LLNS President responsible for the Laboratory's performance. The Board has seven standing committees that assist in assessing Laboratory performance and monitoring risks and internal controls. Through the Board of Governors, the Laboratory can reach back to LLNS partner organizations to help ensure that it fulfills its national security mission with excellence in scientific research, technology development, business management, and safe, secure operations. LLNS assumed management of LLNL on October 1, 2007. This report highlights LLNS accomplishments in FY2008, its first year as the Laboratory's managing contractor. It is clear that LLNS and the Laboratory have exploited numerous synergies inherent in their relationship - for example, science and engineering, mission and operations, LLNS partners and LLNL directorates - to notable success

    A Year of Exceptional Achievements FY 2008

    Get PDF
    2008 highlights: (1) Stockpile Stewardship and Complex Transformation - LLNL achieved scientific breakthroughs that explain some of the key 'unknowns' in nuclear weapons performance and are critical to developing the predictive science needed to ensure the safety, reliability, and security of the U.S. nuclear deterrent without nuclear testing. In addition, the National Ignition Facility (NIF) passed 99 percent completion, an LLNL supercomputer simulation won the 2007 Gordon Bell Prize, and a significant fraction of our inventory of special nuclear material was shipped to other sites in support of complex transformation. (2) National and Global Security - Laboratory researchers delivered insights, technologies, and operational capabilities that are helping to ensure national security and global stability. Of particular note, they developed advanced detection instruments that provide increased speed, accuracy, specificity, and resolution for identifying and characterizing biological, chemical, nuclear, and high-explosive threats. (3) Exceptional Science and Technology - The Laboratory continued its tradition of scientific excellence and technical innovation. LLNL scientists made significant contributions to Nobel Prize-winning work on climate change. LLNL also received three R&D 100 awards and six Nanotech 50 awards, and dozens of Laboratory scientists and engineers were recognized with professional awards. These honors provide valuable confirmation that peers and outside experts recognize the quality of our staff and our work. (4) Enhanced Business and Operations - A major thrust under LLNS is to make the Laboratory more efficient and cost competitive. We achieved roughly 75millionincostsavingsforsupportactivitiesthroughorganizationalchanges,consolidationofservices,improvedgovernancestructuresandworkprocesses,technologyupgrades,andsystemssharedwithLosAlamosNationalLaboratory.Werealizednonlaborcostsavingsof75 million in cost savings for support activities through organizational changes, consolidation of services, improved governance structures and work processes, technology upgrades, and systems shared with Los Alamos National Laboratory. We realized nonlabor cost savings of 23 million. Severe fiscal constraints necessitated a major workforce restructuring and reduction

    Charged black holes: Wave equations for gravitational and electromagnetic perturbations

    Get PDF
    A pair of wave equations for the electromagnetic and gravitational perturbations of the charged Kerr black hole are derived. The perturbed Einstein-Maxwell equations in a new gauge are employed in the derivation. The wave equations refer to the perturbed Maxwell spinor Φ0\Phi_0 and to the shear σ\sigma of a principal null direction of the Weyl curvature. The whole construction rests on the tripod of three distinct derivatives of the first curvature κ\kappa of a principal null direction.Comment: 12 pages, to appear in Ap.

    Regularization of the Teukolsky Equation for Rotating Black Holes

    Get PDF
    We show that the radial Teukolsky equation (in the frequency domain) with sources that extend to infinity has well-behaved solutions. To prove that, we follow Poisson approach to regularize the non-rotating hole, and extend it to the rotating case. To do so we use the Chandrasekhar transformation among the Teukolsky and Regge-Wheeler-like equations, and express the integrals over the source in terms of solutions to the homogeneous Regge-Wheeler-like equation, to finally regularize the resulting integral. We then discuss the applicability of these results.Comment: 14 pages, 1 Table, REVTE

    Ultrarelativistic circular orbits of spinning particles in a Schwarzschild field

    Full text link
    Ultrarelativistic circular orbits of spinning particles in a Schwarzschild field described by the Mathisson-Papapetrou equations are considered. The preliminary estimates of the possible synchrotron electromagnetic radiation of highly relativistic protons and electrons on these orbits in the gravitational field of a black hole are presentedComment: 9 page

    One-loop Quantum Gravity in Schwarzschild Spacetime

    Get PDF
    The quantum theory of linearized perturbations of the gravitational field of a Schwarzschild black hole is presented. The fundamental operators are seen to be the perturbed Weyl scalars Ψ˙0\dot\Psi_0 and Ψ˙4\dot\Psi_4 associated with the Newman-Penrose description of the classical theory. Formulae are obtained for the expectation values of the modulus squared of these operators in the Boulware, Unruh and Hartle-Hawking quantum states. Differences between the renormalized expectation values of both Ψ˙02\bigl| \dot\Psi_0 \bigr|^2 and Ψ˙42\bigl| \dot\Psi_4 \bigr|^2 in the three quantum states are evaluated numerically.Comment: 39 pages, 11 Postscript figures, using revte

    Kerr-AdS and its Near-horizon Geometry: Perturbations and the Kerr/CFT Correspondence

    Get PDF
    We investigate linear perturbations of spin-s fields in the Kerr-AdS black hole and in its near-horizon geometry (NHEK-AdS), using the Teukolsky master equation and the Hertz potential. In the NHEK-AdS geometry we solve the associated angular equation numerically and the radial equation exactly. Having these explicit solutions at hand, we search for linear mode instabilities. We do not find any (non-)axisymmetric instabilities with outgoing boundary conditions. This is in agreement with a recent conjecture relating the linearized stability properties of the full geometry with those of its near-horizon geometry. Moreover, we find that the asymptotic behaviour of the metric perturbations in NHEK-AdS violates the fall-off conditions imposed in the formulation of the Kerr/CFT correspondence (the only exception being the axisymmetric sector of perturbations).Comment: 26 pages. 4 figures. v2: references added. matches published versio

    Operational Significance of Discord Consumption: Theory and Experiment

    Full text link
    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding. No entanglement exists at any point of this experiment. Thus we introduce and demonstrate an operational method to use discord as a physical resource.Comment: 10 pages, 3 figures, updated with Nature Physics Reference, simplified proof in Appendi
    corecore