9 research outputs found

    A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

    Get PDF
    To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = Kagg(T−T0)2, where Kagg is the parameter characterizing the initial rate of aggregation and T0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets

    Folding Circular Permutants of IL-1β: Route Selection Driven by Functional Frustration

    Get PDF
    Interleukin-1β (IL-1β) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT “functional loop-packing route”, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins

    Impact of the native-state stability of human lysozyme variants on protein secretion by Pichia pastoris

    Full text link
    We report the secreted expression by Pichia pastoris of two human lysozyme variants F57I and W64R, associated with systemic amyloid disease, and describe their characterization by biophysical methods. Both variants have a substantially decreased thermostability compared with wild-type human lysozyme, a finding that suggests an explanation for their increased propensity to form fibrillar aggregates and generate disease. The secreted yields of the F57I and W64R variants from P. pastoris are 200- and 30-fold lower, respectively, than that of wild-type human lysozyme. More comprehensive analysis of the secretion levels of 10 lysozyme variants shows that the low yields of these secreted proteins, under controlled conditions, can be directly correlated with a reduction in the thermostability of their native states. Analysis of mRNA levels in this selection of variants suggests that the lower levels of secretion are due to post-transcriptional processes, and that the reduction in secreted protein is a result of degradation of partially folded or misfolded protein via the yeast quality control system. Importantly, our results show that the human disease-associated mutations do not have levels of expression that are out of line with destabilizing mutations at other sites. These findings indicate that a complex interplay between reduced native-state stability, lower secretion levels, and protein aggregation propensity influences the types of mutation that give rise to familial forms of amyloid disease
    corecore