5 research outputs found

    Episodic memory effects of gamma frequency precuneus transcranial magnetic stimulation in Alzheimer's disease: A randomized multiple baseline study

    No full text
    Episodic memory decline is the prominent neuropsychological feature of typical Alzheimer's Disease (AD), for which current treatments have a limited clinical response. Recently, gamma entrainment therapy has been used as a non-invasive treatment in AD, providing evidence that it may have the potential to alleviate brain pathology and improve cognitive function in AD patients. At the same time, the precuneus (PC) has been recognized as a key area involved in AD related memory deficits and as a key node of the Default Mode Network. This study aimed to investigate the effectiveness of a 40 Hz Transcranial Magnetic Stimulation (TMS) intervention, delivered bilaterally to the precuneus for 10 days, in improving the patients' episodic memory performance. Secondary outcome variables investigated included general cognitive function, semantic and spatial memory, as well as attention and executive function. A concurrent multiple baseline design across five cases was employed. Four patients completed the study. Visual analysis combined with effect size indices were used to evaluate changes across phases. An increase in the average level of immediate recalled words was observed in three out of four patients. Effect size indices indicated significant improvement of attention skills in two patients. No treatment effect was observed for semantic and visual memory, or for executive function. An immediate treatment effect was observed in all patients' general cognitive function as assessed with the Alzheimer's Disease Assessment Scale (mean reduction of 5 points), which was maintained and improved further three months post-treatment. The neuropsychological evaluations indicated improved performance three months post-treatment in immediate and delayed recall, attention, phonological verbal fluency, anxiety, and neuropsychiatric symptoms. This study provides preliminary evidence for the efficacy of a novel non-pharmacological treatment using gamma-band TMS in addressing cognitive dysfunction in AD

    Open-Label Fosmetpantotenate, a Phosphopantothenate Replacement Therapy in a Single Patient with Atypical PKAN

    No full text
    Objective. Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder with variable onset, rate of progression, and phenotypic expression. Later-onset, more slowly progressive PKAN often presents with neuropsychiatric as well as motor manifestations that include speech difficulties, progressive dystonia, rigidity, and parkinsonism. PKAN is caused by biallelic PANK2 mutations, a gene that encodes pantothenate kinase 2, a regulatory enzyme in coenzyme A biosynthesis. Current therapeutic strategies rely on symptomatic relief. We describe the treatment of the first, later-onset PKAN patient with oral fosmetpantotenate (previously known as RE-024), a novel replacement therapy developed to bypass the enzymatic defect. Methods. This was an openlabel, uncontrolled, 12-month treatment with fosmetpantotenate of a single patient with a later-onset, moderately severe, and slowly progressive form of PKAN. Results. The patient showed improvement in all clinical parameters including the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia Scale, the EuroQol five-dimensional three-level (EQ-5D-3L) scale, timed 25-foot walk test, and electroglottographic speech analysis. Fosmetpantotenate was well-tolerated with only transient liver enzyme elevation which normalized after dose reduction and did not recur after subsequent dose increases. Conclusions. Fosmetpantotenate showed promising results in a single PKAN patient and should be further studied in controlled trials

    Open-Label Fosmetpantotenate, a Phosphopantothenate Replacement Therapy in a Single Patient with Atypical PKAN

    No full text
    Objective. Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder with variable onset, rate of progression, and phenotypic expression. Later-onset, more slowly progressive PKAN often presents with neuropsychiatric as well as motor manifestations that include speech difficulties, progressive dystonia, rigidity, and parkinsonism. PKAN is caused by biallelic PANK2 mutations, a gene that encodes pantothenate kinase 2, a regulatory enzyme in coenzyme A biosynthesis. Current therapeutic strategies rely on symptomatic relief. We describe the treatment of the first, later-onset PKAN patient with oral fosmetpantotenate (previously known as RE-024), a novel replacement therapy developed to bypass the enzymatic defect. Methods. This was an open-label, uncontrolled, 12-month treatment with fosmetpantotenate of a single patient with a later-onset, moderately severe, and slowly progressive form of PKAN. Results. The patient showed improvement in all clinical parameters including the Unified Parkinson’s Disease Rating Scale (UPDRS), Barry-Albright Dystonia Scale, the EuroQol five-dimensional three-level (EQ-5D-3L) scale, timed 25-foot walk test, and electroglottographic speech analysis. Fosmetpantotenate was well-tolerated with only transient liver enzyme elevation which normalized after dose reduction and did not recur after subsequent dose increases. Conclusions. Fosmetpantotenate showed promising results in a single PKAN patient and should be further studied in controlled trials

    Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery

    No full text
    An orange peel waste biorefinery was developed employing a design of experiments approach to optimize the ultrasound-assisted dilute acid hydrolysis process applied for production of useful commodities. Central composite design-based response surface methodology was used to approximate the combined effects of process parameters in simultaneous production of essential oils, pectin and a sugar-rich hydrolyzate. Application of a desirability function determined the optimal conditions required for maximal production efficiency of essential oils, pectin and sugars as 5.75% solid loading, 1.21% acid concentration and 34.2 min duration. Maximum production yields of 0.12% w/w essential oils, 45% w/w pectin and 40% w/w sugars were achieved under optimized conditions in lab- and pilot-scale facilities. The hydrolyzate formed was applied in bacterial cellulose fermentations producing 5.82 g biopolymer per 100 g waste. Design of experiments was efficient for process analysis and optimization providing a systems platform for the study of biomass-based biorefineries
    corecore